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Problems posed by Peter Cameron
G-invariant and trellis decoding

Trellis decoding is a method of error correction which takes account of the fact that in a noisy
channel, the received word is a vector of reals rather than a word over the finite alphabet of the
code; it finds the codeword at shortest Euclidean distance from the received word. (Assuming that
errors are independent and Gaussian, this coincides with maximum likelihood decoding.)

A trellis is a directed graph with a source and sink, having edges labelled with the elements of
the alphabet of the code, so that the words given by reading paths from source to sink coincide with
the codewords. As each value of the incoming word is received, the contribution to the Euclidean
distance for each edge can be computed, and when the whole word is received, we just have a
shortest path problem to solve.

Muder [2] showed how to construct a trellis for a linear code over a finite field, which is minimal
in several senses (number of vertices or of edges, or cycle rank). The size of the trellis depends on
the positions of elements of the (lexicographically) first and last bases of the associated matroid.
The smallest trellis is obtained as a compromise from making the first basis occur as late as possible
and making the last basis occur as early as possible.

For example, for the extended binary Golay code, the smallest trellis has 2686 vertices, with
last basis {8, 12, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24}, and the first basis the complement of this. The
orderings giving such a trellis can be characterised in terms of the geometry of the code.

The G-invariant of a matroid [1] is a gadget which keeps track of the positions of elements of
the first base of the matroid under all possible orderings of its elements.
Problem. Is there an analogue of the G-invariant which keeps track of the first and last bases under
all possible orderings? How is such an invariant related to the Tutte polynomial? Is it possible to
obtain some kind of “average” size of the trellis of a linear code as a specialisation of the Tutte
polynomial of the associated matroid?
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Problems posed by Fengming Dong

P (G, x): the chromatic polynomial of G
F (G, x): the flow polynomial of G

Conjecture 0.1. For any graph G, if P (G, x) = 0 and x 6= 0, then Re(x) 6= 0.
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Conjecture 0.2. There is a constant µ such that F (G, x) > 0 holds for any bridgeless graph G
and any real x ≥ µ · g(G), where g(G) is the girth of G.

Conjecture 0.3. There exists a sequence c2, c3, · · · such that

F (G, x) > 0

for all graphs G with g(G) = i and real x ≥ ci, and

lim
n→∞

cn/n = 0.

Conjecture 0.4. For any bridgeless graph G, if all zeros of F (G, x) are real, then all zeros of
F (G, x) are in {1, 2, 3, 4}.
Conjecture 0.5. For any Hamiltonian graph G, P (G, x) has no zeros in the interval (1, 2).

Problems posed by Alex Fink

This problem concerns the generalisation of Fink and Speyer’s construction of the Tutte poly-
nomial to delta-matroids.

Delta-matroids are type BC Coxeter matroids for the maximal parabolic subgroup excluding
only the simple root αn of unusual length (the one long in type C, and short in type B).

If M is a representable delta-matroid, represented by the point x in the flag variety Fl(αn), then
the moment polytope of the closure xT of its orbit under the usual action of an n-dimensional
algebraic torus T is the convex hull of the bases of M . Its class [M ] = [OxT ] in the T -equivariant
algebraic K-theory of Fl(αn) is determined locally by the vertex figures of the polytope; this allows
a class [M ] to be defined even when M is not representable.

Let O(1) be the ample generator of Pic(Fl(αn)). Let A be some collection of other simple roots:
plausible choices are a singleton set {α1} or {α2} (in Bourbaki’s labelling). Define the double
fibration

Fl(A ∪ {αn})
π

ww

ρ

&&
Fl(αn) Fl(A)

.

One can then define an invariant of M as

ρ∗π
∗([M ] · [O(1)]) ∈ K0

T (Fl(A)).

How do the invariants defined this way compare to known Tutte-like invariants of delta-matroids,
such as the Bollobas-Riordan polynomial?

Problems posed by Andrew Goodall
Homomorphism counting and matroid invariants

A group Γ acting on a set V (γ ∈ Γ sending v ∈ V to vγ ∈ V ) is generously transitive if for
each u, v ∈ V there is γ such that uγ = v and vγ = u. Let G,H be finite simple graphs and let
hom(G,H) denote the number of homomorphisms from G to H.

(i) Is it true that if the graph invariant

h(G) =
hom(G,H)

|V (H)|c(G)

depends only on the cycle matroid of G then the automorphism group of H must be gen-
erously transitive? (The converse holds [de la Harpe and Jaeger, 1995].)
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(ii) Suppose that h(G) is indeed dependent only on the cycle matroid of G, i.e.,

h(G) = f(M(G))

where M(G) is the cycle matroid of G. What does f(M(G)) count in terms of the matroid
M(G)? For which matroids other than graphic matroids can it be defined?

(iii) Under the hypotheses of (ii), what are the matroid duals of the objects counted by f(M(G))
expressed in terms of the graph G?

(iv) Is there a weighted graph Ĥ such that f(M(G)∗) = hom(G, Ĥ)?

The motivating example for (ii)-(iv) is when H = Kk, where f(M(G)) counts nowhere-zero Zk-
tensions of M(G) with an orientation (a signing of the circuits encoding an orientation of the graph
G). Tensions can be defined for any orientable matroid (circuits signed subject to a consistency
condition). Nowhere-zero Zk-flows are dual to nowhere-zero Zk-tensions, and flows can be defined

by stipulating that Kirchhoff’s law holds at each vertex of G. The graph K̂k with weight −1 on
the edges of the complete graph Kk, loops of weight k − 1 on each vertex, and a weight of 1

k on

each vertex has the property that hom(G, Ĥ) = F (G; k), the flow polynomial of G.
Cayley graphs have generously transitive automorphism group. Kneser graphs and generalized

Johnson graphs also have generously transitive automorphism group, but in general are not Cayley
graphs. Thus for example “Kneser k : r colourings” of G (homomorphisms to Kk:r) depend only
on the cycle matroid of G and the number of connected components of G: the question (iii) in this
case is what might count as“Kneser k : r flows”. (When r = 1 these are nowhere-zero Zk-flows.)

Problems posed by Jesper Jacobsen

to follow

Problems posed by J.A. Makowsky

Let P be a graph property. A vertex P -coloring with at most k colors of a graph (V (G), E(G))
is a function

f : V (G)→ [k]

such that for each i ∈ [k] the set f−1(i) induces a subgraph of G which is in P .
An edge P -coloring with at most k colors of a graph (V (G), E(G)) is a function

f : E(G)→ [k]

such that for each i ∈ [k] the spanning subgraph of the set f−1(i) is a subgraph of G which is in P .
In extremal graph theory many such colorings are studied, usually motivated by concepts in

engineering are natural sciences.

Theorem (Kotek,Makowsky Zilber):
Let χPv (G; k) be the number of vertex P -colorings with at most k colors of a graph
G (and χPe (G; k) be the analogue for edge colorings). Then for each G the number
χPv (G; k) (χPe (G; k)) is a polynomial in k.

Theorem (Makowsky,Ravve): For two graph properties P,Q the polynomials χPv (G; k)

and χQv (G; k) (χPe (G; k) and χQe (G; k)) are d.p. equivalent iff P = Q or P = ¬Q.

Problem 1: Study these polynomials! Location of zeroes, expressive power, etc.
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Let P (G,A) be property of subsets A ⊆ V (G)r of a graph G. Let f1(G), . . . , fm(G) be integer-
valued graph parameters. We look at the graph polynomials of the form

FP,f1,...,fm(G,X1, . . . , Xm) =
∑

A⊆V (G)r:P (G,A)

(
m∏
i=1

Xfi(G[A])

)
This clearly generalizes the Tutte polynomial.

Problem 2: Study these polynomials! For which properties and graph parameters
is it interesting.

Averbouch, Godlin and Makowsky have shown that there is such a polynomial generalizing
both the Tutte and the matching polynomial, which is characterized by deletion, contraction and
extraction of edges.

An extension of the bivariate chromatic polynomial I Averbouch, B Godlin, JA Makowsky Eu-
ropean Journal of Combinatorics 31 (1), 1-17

Problem 3: How are the generalized chromatic polynomials χPv (G; k) and the
polynomials FP,f1,...,fm(G,X1, . . . , Xm) related?

Problems posed by Iain Moffatt

A delta-matroid D = (E,F) consists of a set E and a non-empty collection F subsets of E that
satisfies the Symmetric Exchange Axiom: for all X,Y ∈ F , if there is an element u ∈ X4Y , then
there is an element v ∈ X4Y such that X4{u, v} ∈ F . Elements of F called feasible sets and E
is the ground set. For sets X and Y , X4Y := (X ∪ Y )\(X ∩ Y ) is their symmetric difference.

A delta matroid is a matroid if all of the feasible sets of a delta-matroid are equicardinal. This
is the bases definition of a matroid. A matroid can also be defined in terms of a rank function
r : E → N0.

Question: Is there a “rank function” definition of a delta-matroid?
Perhaps the following will provide some insight as to what such a function should look like.

Recall that the Tutte polynomial of a matroid M with rank function r is

TM (x, y) =
∑
A⊆E

(x− 1)r(G)−r(A)(y − 1)|A|−r(A).

Restricting the feasible sets of a delta-matroid to those of maximal (respectively, minimal) size
results in a matroid Dmax (respectively, Dmin). The “Tutte polynomial” of a delta-matroid is

R̃D(x, y) :=
∑
A⊆E

(x− 1)ρ(E)−ρ(A)(y − 1)|A|−ρ(A).

where

ρ(D) :=
1

2
(rmax(D) + rmin(D)),

where rmax(D) and rmin are the rank functions of Dmax and Dmin respectively. For A ⊆ E,

ρ(A) := ρ(D\Ac).
It is important to notice that in general ρD(A) 6= 1

2(rDmax(A) + rDmin(A)).
Question: Is there a way to determine the feasible sets of D from a knowledge of ρ? (Update

16th July 2015: Carolyn Chun and Steve Noble showed that the answer is yes.)
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