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Motivation

Definition (Aigner & van der Holst 2004, and Bouchet 1991)

The (single-variable) interlace polynomial of a graph G is

q(G ; y) =
∑

X⊆V (G)

(y − 1)n(A(G)[X ]).

Theorem (Aigner & van der Holst 2004, and Bouchet 1991)

Let M be a binary matroid and G be the fundamental bipartite
graph of M with respect to some basis B. Then
T (M; y , y) = q(G ; y).

T (M; y , y) is defined for arbitrary matroids (instead of only
binary matroids).

q(G ; y) is defined for arbitrary graphs (instead of only
bipartite graphs).

Goal: common generalization for T (M; y , y) and q(G ; y).
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Summary

2 directions 3 directions
(2 minors ops) (3 minors ops)

2-in,out/4-regular graphs G Martin m(G ; y) Martin M(G ; y)
looped simple graphs G Interlace q(G ; y) Interlace Q(G ; y)

matroids Tutte T (M; y , y) —
∆-matroids D q(D; y) Q(D; y)

∆-matroids [Bouchet 1988] generalize both adjacency matrices
and matroids.

Key: q(D; y) and Q(D; y) retain many of the attractive properties:
recursive relations, various evaluations, etc.
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∆-matroids

Let ∆ be symmetric difference.

Definition (Bouchet 1988)

A nonempty set system D = (V ,B) is a ∆-matroid over V if
for all X ,Y ∈ B and u ∈ X ∆Y , there is an element v ∈ X ∆Y
such that X ∆{u, v} ∈ B (we allow u = v).

Theorem (Bouchet 1988)

A set system is a matroid (described by its bases) iff it is an
equicardinal ∆-matroid.
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∆-matroids

Definition

Twist of D on X ⊆ V is D ∗ X := (V ,B ∗ X ) where
B ∗ X = {Y ∆X | Y ∈ D}.

Twist generalizes matroid duality: M ∗ V = M∗.

Theorem (Bouchet 1988)

D is a ∆-matroid iff D ∗ X is a ∆-matroid.

∆-matroids have deletion and contraction, generalizing deletion
and contraction for matroids.

Theorem

A set system D is a ∆-matroid iff min(D ∗X ) is equicardinal for all
X ⊆ V .
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Representable ∆-matroids

Theorem (Bouchet 1988)

For a skew-symmetric V × V -matrix A (over a field F),
DA := (V ,BA) with BA = {X ⊆ V | A[X ] nonsingular} is a
∆-matroid.

Definition

A ∆-matroid D over V is representable over F if D = DA ∗ X for a
V × V -skew-symmetric A over F with X ⊆ V .

Theorem (Bouchet 1988)

A matroid is representable over F in the usual matroid sense iff it
is representable over F in this ∆-matroid sense.

A ∆-matroid D is called binary if representable over GF (2).
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interlace polynomial as ∆-matroid polynomial

Definition

Let D = (V ,B) be a ∆-matroid. Define dD as the common
cardinality of the elements of min(B).

So, dD∗X is Hamming distance of X from D.

Theorem

For any graph G , dDA(G)∗X = n(A(G )[X ]).

Corollary

For any graph G ,

q(G ; y) =
∑

X⊆V (G)

(y − 1)n(A(G)[X ]) =
∑

X⊆V (G)

(y − 1)
dDA(G)∗X .
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interlace polynomial as ∆-matroid polynomial

Corollary

For any graph G ,

q(G ; y) =
∑

X⊆V (G)

(y − 1)
dDA(G)∗X .

Generalization from binary ∆-matroids to arbitrary ∆-matroids:

Definition (∆-matroid polynomial)

Let D be a ∆-matroid over V .

q(D; y) :=
∑
X⊆V

(y − 1)dD∗X .

So, q(G ; y) = q(DA(G); y).
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symmetric Tutte polynomial as ∆-matroid polynomial

Definition (Tutte polynomial)

Let M be a matroid over V .

T (M; x , y) :=
∑
X⊆V

(x − 1)nM∗ (V \X )(y − 1)nM(X ).

Recall that nM(X ) = |X | − rM(X ).

nM∗(V \ X ) + nM(X ) = dM∗X

Theorem

Let M be a matroid over V

T (M; y , y) =
∑
X⊆V

(y − 1)dM∗X = q(M; y).
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∆-matroid notions

Loop and coloop compatible with matroids.

Definition

Let D = (V ,B) be a ∆-matroid. v ∈ V is

loop if for all X ∈ B, v /∈ X ,

coloop if D ∗ v is loop,

singular if v is either loop or coloop.

Deletion and contraction compatible with matroids.

Definition (deletion)

Let D = (V ,B) be a ∆-matroid and v ∈ V . If v is not a coloop,
then D \ v := (V \ {v},B ′) with B ′ = {X ∈ B | v /∈ X}. If v is a
coloop, then D \ v := D ∗ v \ v .

Contraction: D ∗ v \ v .
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Recursive relation for ∆-matroid polynomial

Theorem

Let D be a ∆-matroid over V . If V = ∅, then q(D; y) = 1.
If v ∈ V is nonsingular in D, then

q(D; y) = q(D \ v ; y) + q(D ∗ v \ v ; y).

If v ∈ V is singular in D, then

q(D; y) = yq(D \ v ; y) = yq(D ∗ v \ v ; y).

Two types of minor operations: deletion and contractions.
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Polynomials with three types of minor operations

For a graph G and Y ⊆ V (G ). Let G + Y be the graph obtained
from G by toggling the existence of loops for the vertices of Y .

Definition (Aigner & van der Holst 2004, and Bouchet 1991)

Let G be a graph. Then the global interlace polynomial of G is

Q(G ; y) =
∑

X⊆V (G)

∑
Y⊆X

(y − 2)n(A(G+Y )[X ]).
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∆-matroid version

Definition

Let D = (V ,B) be a ∆-matroid (or, more generally, set system)
and X ⊆ V . Define loop complementation of D on X by
D + X = (V ,B ′) where Y ∈ B ′ iff |{Z ∈ B | Y \ X ⊆ Z ⊆ Y }| is
odd.

D + X not necessarily a ∆-matroid.

Theorem

Let A be a symmetric V × V -matrix and X ⊆ V . Then
DA+X = DA + X .

The class of binary ∆-matroids is closed under +. Extendable to
GF (4).
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∆-matroid version

Theorem

Let D be a ∆-matroid (or, more generally, set system). Then
(D + X ) + X = D. In fact, +X and ∗X are involutions that
generate S3 and commutes on disjoint sets.

Third involution: D ∗̄X := D + X ∗ X + X = D ∗ X + X ∗ X .
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∆-matroid version

Let P3(V ) be the set of ordered 3-partitions of V .

Definition

Let D be a ∆-matroid. Define

Q(D; y) =
∑

(A,B,C)∈P3(V )

(y − 2)dD∗B∗̄C .

Theorem

Let G be a graph. Then Q(G ; y) = Q(DG ; y).
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∆-matroid version

In general, a ∆-matroid D is vf-safe if applying any sequence of
twist and loop complementation obtains a ∆-matroid.

v ∈ V is strongly nonsingular if v is nonsingular and D ∗ v 6= D.

Theorem

Let D be a vf-safe ∆-matroid and let v ∈ V .

1 If v is strongly nonsingular in D, then

Q(D; y) = Q(D \ v ; y) + Q(D ∗ v \ v ; y) + Q(D ∗̄v \ v ; y).

2 If v is not strongly nonsingular in D, then

Q(D; y) = yQ(D \ v ; y).

Three types of minor operations!

Robert Brijder Delta-matroid polynomials



Evaluations

Theorem

Let D be a ∆-matroid.

1 If D is even and |V | > 0, then q(D; 0) = 0.

2 If D is vf-safe, then q(D;−1) = (−1)|V |(−2)dD∗̄V (third
direction!).

3 If D is vf-safe with |V | > 0, then Q(D; 0) = 0.

4 If D is binary, then q(D)(3) = k |q(D)(−1)| for some odd
integer k [Bouchet].
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Penrose polynomial

Definition

Let D be a vf-safe ∆-matroid. The Penrose polynomial of D is

P(D; y) =
∑
X⊆V

(−1)|X |ydD∗V ∗̄X .

Recursive relation is outside realm of matroids.

Theorem

Let D be a vf-safe ∆-matroid. If V = ∅, then PM(y) = 1.
If v ∈ V is

nonsingular in D ∗̄V , then
P(D; y) = P(D ∗ v \ v ; y)− P(D ∗̄v \ v ; y),

a coloop of D ∗̄V , then P(D; y) = (1− y)P(D ∗ v \ v ; y), and

a loop of D ∗̄V , then P(D; y) = (y − 1)P(D ∗̄v \ v ; y).

Multivariate version to incorporate all these ∆-matroid polynomials.
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Summary

2 directions 3 directions
(2 minor ops) (3 minor ops)

2-in,out/4-regular graphs G Martin m(G ; y) Martin M(G ; y)
looped simple graphs G Interlace q(G ; y) Interlace Q(G ; y)

matroids Tutte T (M; y , y) —
∆-matroids D q(D; y) Q(D; y)

Key: q(D; y) and Q(D; y) retain many of the attractive properties:
recursive relations, various evaluations, etc.

Thanks!
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