Delta-matroid polynomials and the symmetric Tutte polynomial

Robert Brijder joint work with Hendrik Jan Hoogeboom

Hasselt University, Belgium

July 11-14, 2015

Motivation

Definition (Aigner & van der Holst 2004, and Bouchet 1991)

The (single-variable) interlace polynomial of a graph G is

$$q(G; y) = \sum_{X \subseteq V(G)} (y - 1)^{n(A(G)[X])}.$$

Theorem (Aigner & van der Holst 2004, and Bouchet 1991)

Let M be a binary matroid and G be the fundamental bipartite graph of M with respect to some basis B. Then T(M; y, y) = q(G; y).

- T(M; y, y) is defined for arbitrary matroids (instead of only binary matroids).
- q(G; y) is defined for arbitrary graphs (instead of only bipartite graphs).
- Goal: common generalization for T(M; y, y) and q(G; y).

Summary

	2 directions	3 directions
	(2 minors ops)	(3 minors ops)
$\frac{1}{2-in,out/4-regular graphs G}$	Martin $m(G; y)$	Martin $M(G; y)$
looped simple graphs G	Interlace $q(G; y)$	Interlace $Q(G; y)$
matroids	Tutte $T(M; y, y)$	_
Δ -matroids D	q(D; y)	Q(D;y)

 Δ -matroids [Bouchet 1988] generalize both adjacency matrices and matroids.

Key: q(D; y) and Q(D; y) retain many of the attractive properties: recursive relations, various evaluations, etc.

Δ -matroids

Let Δ be symmetric difference.

Definition (Bouchet 1988)

A nonempty set system D=(V,B) is a Δ -matroid over V if for all $X,Y\in B$ and $u\in X \Delta Y$, there is an element $v\in X \Delta Y$ such that $X\Delta\{u,v\}\in B$ (we allow u=v).

Theorem (Bouchet 1988)

A set system is a matroid (described by its bases) iff it is an equicardinal Δ -matroid.

Δ -matroids

Definition

Twist of D on $X \subseteq V$ is D * X := (V, B * X) where $B * X = \{Y \Delta X \mid Y \in D\}.$

Twist generalizes matroid duality: $M * V = M^*$.

Theorem (Bouchet 1988)

D is a Δ -matroid iff D * X is a Δ -matroid.

 Δ -matroids have deletion and contraction, generalizing deletion and contraction for matroids.

$\mathsf{Theorem}$

A set system D is a Δ -matroid iff $\min(D * X)$ is equicardinal for all $X \subseteq V$.

Representable Δ -matroids

Theorem (Bouchet 1988)

For a skew-symmetric $V \times V$ -matrix A (over a field \mathbb{F}), $\mathcal{D}_A := (V, B_A)$ with $B_A = \{X \subseteq V \mid A[X] \text{ nonsingular}\}$ is a Δ -matroid.

Definition

A Δ -matroid D over V is representable over $\mathbb F$ if $D=\mathcal D_A*X$ for a $V\times V$ -skew-symmetric A over $\mathbb F$ with $X\subseteq V$.

Theorem (Bouchet 1988)

A matroid is representable over $\mathbb F$ in the usual matroid sense iff it is representable over $\mathbb F$ in this Δ -matroid sense.

A Δ -matroid D is called *binary* if representable over GF(2).

interlace polynomial as Δ -matroid polynomial

Definition

Let D = (V, B) be a Δ -matroid. Define d_D as the common cardinality of the elements of $\min(B)$.

So, d_{D*X} is Hamming distance of X from D.

Theorem

For any graph G, $d_{\mathcal{D}_{A(G)}*X} = n(A(G)[X])$.

Corollary

For any graph G,

$$q(G; y) = \sum_{X \subseteq V(G)} (y - 1)^{n(A(G)[X])} = \sum_{X \subseteq V(G)} (y - 1)^{d_{\mathcal{D}_{A(G)}*X}}.$$

interlace polynomial as Δ -matroid polynomial

Corollary

For any graph G,

$$q(G;y) = \sum_{X \subseteq V(G)} (y-1)^{d_{\mathcal{D}_{A(G)}*X}}.$$

Generalization from binary Δ -matroids to arbitrary Δ -matroids:

Definition (Δ -matroid polynomial)

Let D be a Δ -matroid over V.

$$q(D;y):=\sum_{X\subseteq V}(y-1)^{d_{D*X}}.$$

So,
$$q(G; y) = q(\mathcal{D}_{A(G)}; y)$$
.

symmetric Tutte polynomial as Δ -matroid polynomial

Definition (Tutte polynomial)

Let M be a matroid over V.

$$T(M;x,y):=\sum_{X\subseteq V}(x-1)^{n_{M^*}(V\setminus X)}(y-1)^{n_M(X)}.$$

Recall that $n_M(X) = |X| - r_M(X)$.

$$n_{M^*}(V \setminus X) + n_M(X) = d_{M*X}$$

Theorem

Let M be a matroid over V

$$T(M; y, y) = \sum_{X \subset V} (y - 1)^{d_{M*X}} = q(M; y).$$

Δ -matroid notions

Loop and coloop compatible with matroids.

Definition

Let D = (V, B) be a Δ -matroid. $v \in V$ is

- *loop* if for all $X \in B$, $v \notin X$,
- coloop if D * v is loop,
- singular if v is either loop or coloop.

Deletion and contraction compatible with matroids.

Definition (deletion)

Let D=(V,B) be a Δ -matroid and $v\in V$. If v is not a coloop, then $D\setminus v:=(V\setminus \{v\},B')$ with $B'=\{X\in B\mid v\notin X\}$. If v is a coloop, then $D\setminus v:=D*v\setminus v$.

Contraction: $D * v \setminus v$.

Recursive relation for Δ -matroid polynomial

$\mathsf{Theorem}$

Let D be a Δ -matroid over V. If $V = \emptyset$, then q(D; y) = 1. If $v \in V$ is nonsingular in D, then

$$q(D;y) = q(D \setminus v;y) + q(D*v \setminus v;y).$$

If $v \in V$ is singular in D, then

$$q(D; y) = yq(D \setminus v; y) = yq(D * v \setminus v; y).$$

Two types of minor operations: deletion and contractions.

Polynomials with three types of minor operations

For a graph G and $Y \subseteq V(G)$. Let G + Y be the graph obtained from G by toggling the existence of loops for the vertices of Y.

Definition (Aigner & van der Holst 2004, and Bouchet 1991)

Let G be a graph. Then the global interlace polynomial of G is

$$Q(G; y) = \sum_{X \subset V(G)} \sum_{Y \subset X} (y - 2)^{n(A(G+Y)[X])}.$$

Δ-matroid version

Definition

Let D=(V,B) be a Δ -matroid (or, more generally, set system) and $X\subseteq V$. Define loop complementation of D on X by D+X=(V,B') where $Y\in B'$ iff $|\{Z\in B\mid Y\setminus X\subseteq Z\subseteq Y\}|$ is odd.

D + X not necessarily a Δ -matroid.

Theorem

Let A be a symmetric $V \times V$ -matrix and $X \subseteq V$. Then $\mathcal{D}_{A+X} = \mathcal{D}_A + X$.

The class of binary Δ -matroids is closed under +. Extendable to GF(4).

Δ -matroid version

Theorem

Let D be a Δ -matroid (or, more generally, set system). Then (D+X)+X=D. In fact, +X and *X are involutions that generate S_3 and commutes on disjoint sets.

Third involution: $D \overline{*} X := D + X * X + X = D * X + X * X$.

Δ-matroid version

Let $\mathcal{P}_3(V)$ be the set of ordered 3-partitions of V.

Definition

Let D be a Δ -matroid. Define

$$Q(D; y) = \sum_{(A,B,C) \in \mathcal{P}_3(V)} (y-2)^{d_{D*B*C}}.$$

Theorem

Let G be a graph. Then $Q(G; y) = Q(\mathcal{D}_G; y)$.

Δ -matroid version

In general, a Δ -matroid D is *vf-safe* if applying any sequence of twist and loop complementation obtains a Δ -matroid.

 $v \in V$ is strongly nonsingular if v is nonsingular and $D * v \neq D$.

Theorem

Let D be a vf-safe Δ -matroid and let $v \in V$.

• If v is strongly nonsingular in D, then

$$Q(D;y) = Q(D \setminus v;y) + Q(D*v \setminus v;y) + Q(D\overline{*}v \setminus v;y).$$

2 If v is not strongly nonsingular in D, then

$$Q(D; y) = yQ(D \setminus v; y).$$

Three types of minor operations!

Evaluations

Theorem

Let D be a Δ -matroid.

- If D is even and |V| > 0, then q(D; 0) = 0.
- ② If D is vf-safe, then $q(D;-1) = (-1)^{|V|}(-2)^{d_{D\bar{*}V}}$ (third direction!).
- 3 If D is vf-safe with |V| > 0, then Q(D; 0) = 0.
- If D is binary, then q(D)(3) = k |q(D)(-1)| for some odd integer k [Bouchet].

Penrose polynomial

Definition

Let D be a vf-safe Δ -matroid. The Penrose polynomial of D is

$$P(D; y) = \sum_{X \subseteq V} (-1)^{|X|} y^{d_{D*V\bar{*}X}}.$$

Recursive relation is outside realm of matroids.

$\mathsf{Theorem}$

Let D be a vf-safe Δ -matroid. If $V = \emptyset$, then $P_M(y) = 1$. If $v \in V$ is

- nonsingular in $D \bar{*} V$, then $P(D; y) = P(D * v \setminus v; y) P(D \bar{*} v \setminus v; y),$
- a coloop of $D \bar{*} V$, then $P(D; y) = (1 y) P(D * v \setminus v; y)$, and
- a loop of $D \bar{*} V$, then $P(D; y) = (y 1)P(D \bar{*} v \setminus v; y)$.

Multivariate version to incorporate all these Δ -matroid polynomials.

Summary

	2 directions	3 directions
	(2 minor ops)	(3 minor ops)
2-in,out/4-regular graphs <i>G</i>	Martin $m(G; y)$	Martin $M(G; y)$
looped simple graphs G	Interlace $q(G; y)$	Interlace $Q(G; y)$
matroids	Tutte $T(M; y, y)$	_
Δ -matroids D	q(D; y)	Q(D;y)

Key: q(D; y) and Q(D; y) retain many of the attractive properties: recursive relations, various evaluations, etc.

Thanks!

