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Workshop on the Tutte Polynomial

The Rooted Tutte Polynomial

A rooted graph is a graph with a fixed source vertex called the root. The Tutte
polynomial of a rooted graph G = (V ,E ) with root vertex r is given by

T (G , r ; x , y) =
∑
A⊆E

(x − 1)ρ(E )−ρ(A)(y − 1)|A|−ρ(A),

where ρ(A) = maxF⊆A{|F | : F is a rooted tree} is the branching rank of A.

Example
r

G =

T (G , r ; x , y) = x2y − 2xy + 2x + 2y .

The matroidal Tutte polynomial and the rooted Tutte polynomial coincide when
x = 1. A consequence of this is that they share evaluations along this line. For
instance for G as above we have
T (G , r ; 1, 2) = #( spanning connected subgraphs of G ) = 4. These such
graphs can be seen below.

Complexity of Evaluating the Rooted Tutte Polynomial

Evaluating the two-variable
rooted Tutte polynomial
anywhere in the xy -plane is
#P-hard apart from at (1, 1)
and along the hyperbola H1:
(x − 1)(y − 1) = 1. In both
of these cases there is a
polynomial time algorithm
to evaluate T (G , r ; x , y).
The complexity plane
showing some of the curves
Hβ : (x − 1)(y − 1) = β for
β ∈ R is given to the right,
where the ‘easy’ points are
coloured green.
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Tree-Decomposition

Let G = (V ,E ) be a rooted graph. A nice tree-decomposition of G is a pair
τ = ({Si |i ∈ I},T = (I ,B)) with a root node Sr such that T is a tree with
branches B , and for every node i of T , we have a subset Si of V , such that:

1.
∪

i∈I Si = V .

2. for every edge (v ,w) ∈ E , there exists a leaf l of T such that {v ,w} ⊆ Sl .

3. for all i , j , k ∈ I , if j is on the path from i to k in T , then Si ∩ Sk ⊆ Sj .

4. for all i ∈ I , Si must contain the root vertex.
5. every node i ∈ I must be one of the following types:

I Leaf: node i is a leaf of T .
I Join: node i has exactly two child nodes j and k in T and Si = Sj = Sk .
I Introduce: node i has exactly one child j in T , and there is a vertex a ∈ V \ Sj with
Si = Sj ∪ {a}.

I Forget: node i has exactly one child j in T , and there is a vertex a ∈ V \ Si with
Sj = Si ∪ {a}.

6. for every node i ∈ I which isn’t a forget node, there exists a leaf l of T such
that Si = Sl .

Tree-Width

The tree-width of τ is given by

max
i∈I

|Si | − 1.

The tree-width of G is then said to be the minimum tree-width taken over all
possible nice tree-decompositions of G .

The notion of tree-width has proven to be very important in algorithmic graph
theory. This is because many algorithmic problems that are intractable for
arbitrary graphs, can be solved efficiently in polynomial and often linear time
when restricted to the class of graphs with bounded tree-width.

Example Showing a Tree-Decomposition of a Graph

Example

Here we give a rooted graph
G with root vertex a,
together with a possible
rooted tree-decomposition of
it with tree-width 2.
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Main Idea

If we restrict the class of rooted graphs we are considering
to be those with bounded tree-width, then we can find a
linear-time algorithm to evaluate the rooted Tutte
polynomial of such graphs anywhere in the xy -plane.

Concept of the Algorithm

Let G = (V ,E ) be a simple rooted graph with tree-width at most k .

Let τ = ({Si |i ∈ I},T = (I ,B)) be a nice tree-decomposition of G positioned
such that the root node Sr is at the top and all other nodes in T are
descendants of it (like in the previous Example).

We begin by partitioning the edges of G among the leaf nodes of T . To each
node i ∈ I , we associate a set of vertices Vi ⊆ V and edges Ei ⊆ E and let

V ′
i =

∪
j≤i

Vj and E ′
i =

∪
j≤i

Ej ,

where the union is taken over every leaf j such that j is a descendant of i in T .
Therefore to every node i ∈ I in τ we associate a subgraph Gi = (V ′

i ,E
′
i ).

We define a state α on a node set Si in T to be a partition πα of some subset
Sα of Si into non-empty blocks B1, . . . ,Bk such that the root vertex is in block
B1. We let B0 = Si \ Sα and |πα| denote the number of blocks in Sα.

We essentially say that a subset of edges Ai ⊆ E ′
i induces a state α if Gi |Ai

partitions the connected components of the vertices in Si into the same blocks
as α.
Let

f (A, α) = | Vertices in Gi \ Si that are not connected to Sα |,
and

g(A, α) = |A| − |V (G )| + f (A, α) + |S | − |Sα| + |πα|.

For every node i in τ we compute

TGi
(α; x , y) =

∑
(x − 1)f (A,α)(y − 1)g(A,α) (1)

where we are summing over all subsets of edges Ai ⊆ E ′
i which induce state α,

for all possible states on Si .

If we begin by computing this for each state on the leaf nodes in τ then we can
easily adapt these polynomials as we work our way up the nice
tree-decomposition towards Sr , eventually calculating the required rooted Tutte
polynomial of G . This can all be done in linear time.

Example (Continued)

Computing (??) for each state on Sr with |πα| = 1 in the nice tree-decomposition
of G we get

I acd : y 2 + 2y + xy + 2x + 2

I ac|d : x2y − 2xy + x + y − 1

I ad|c : x2 + xy − y − 1

I a|cd : x3y 2 − 3x2y 2 + x2y + 3xy 2 − 2xy − y 2 + y .

Summing these polynomials gives
T (G , a; x , y) = x3y 2 − 3x2y 2 + 3xy 2 + 2x2y − 2xy + x2 + 3x + 3y .


