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Counting graph homomorphisms
Sequences giving graph polynomials
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Graph homomorphisms

Chromatic polynomial

Definition by evaluations at positive integers

k ∈ N, P(G ; k) = #{proper vertex k-colourings of G}.

P(G ; k) =
∑

1≤j≤|V (G)|

(−1)jbj(G )k |V (G)|−j

bj(G ) = #{j-subsets of E (G ) containing no broken cycle}.

(−1)|V (G)|P(G ;−1) = #{acyclic orientations of G}
uv ∈ E (G ), P(G ; k) = P(G\uv ; k)− P(G/uv ; k)



Counting graph homomorphisms
Sequences giving graph polynomials

Open problems

Graph polynomials
Graph homomorphisms

Chromatic polynomial

Definition by evaluations at positive integers

k ∈ N, P(G ; k) = #{proper vertex k-colourings of G}.

P(G ; k) =
∑

1≤j≤|V (G)|

(−1)jbj(G )k |V (G)|−j

bj(G ) = #{j-subsets of E (G ) containing no broken cycle}.

(−1)|V (G)|P(G ;−1) = #{acyclic orientations of G}
uv ∈ E (G ), P(G ; k) = P(G\uv ; k)− P(G/uv ; k)



Counting graph homomorphisms
Sequences giving graph polynomials

Open problems

Graph polynomials
Graph homomorphisms

Chromatic polynomial

Definition by evaluations at positive integers

k ∈ N, P(G ; k) = #{proper vertex k-colourings of G}.

P(G ; k) =
∑

1≤j≤|V (G)|

(−1)jbj(G )k |V (G)|−j

bj(G ) = #{j-subsets of E (G ) containing no broken cycle}.

(−1)|V (G)|P(G ;−1) = #{acyclic orientations of G}

uv ∈ E (G ), P(G ; k) = P(G\uv ; k)− P(G/uv ; k)



Counting graph homomorphisms
Sequences giving graph polynomials

Open problems

Graph polynomials
Graph homomorphisms

Chromatic polynomial

Definition by evaluations at positive integers

k ∈ N, P(G ; k) = #{proper vertex k-colourings of G}.

P(G ; k) =
∑

1≤j≤|V (G)|

(−1)jbj(G )k |V (G)|−j

bj(G ) = #{j-subsets of E (G ) containing no broken cycle}.

(−1)|V (G)|P(G ;−1) = #{acyclic orientations of G}
uv ∈ E (G ), P(G ; k) = P(G\uv ; k)− P(G/uv ; k)



Counting graph homomorphisms
Sequences giving graph polynomials

Open problems

Graph polynomials
Graph homomorphisms

Independence polynomial

Definition by coefficients
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1≤j≤|V (G)|

bj(G )x j ,

bj(G ) = #{independent subsets of V (G ) of size j}.

v ∈ V (G ), I (G ; x) = I (G − v ; x) + xI (G − N[v ]; x)
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Definition

Graphs G ,H.
f : V (G )→ V (H) is a homomorphism from G to H if
uv ∈ E (G ) ⇒ f (u)f (v) ∈ E (H).

Definition

H with adjacency matrix (as,t), weight as,t on st ∈ E (H),

hom(G ,H) =
∑

f :V (G)→V (H)

∏
uv∈E(G)

af (u),f (v).

hom(G ,H) = #{homomorphisms from G to H}
= #{H-colourings of G}

when H simple (as,t ∈ {0, 1}) or multigraph (as,t ∈ N)
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The main question

Which sequences (Hk,`,...) of simple graphs are such that, for all
graphs G , for each k , `, · · · ∈ N we have

hom(G ,Hk,`,...) = p(G ; k , `, . . . )

for polynomial p(G )?

Characterizing simple graph sequences (Hk,`,...) with this property
gives straightforward characterization for multigraph sequences too
(allowing multiple edges & loops).
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k ) = k |V (G)|
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k) =

∑
f :V (G)→[k]

`#{uv∈E(G) | f (u)=f (v)}

= kc(G)(`− 1)r(G)T (G ; `−1+k
`−1 , `) (Tutte polynomial)
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Proposition (Garijo, G., Nešeťril, 2013+)

hom(G ,Qk) = p(G ; k , 2k) for bivariate polynomial p(G )



Counting graph homomorphisms
Sequences giving graph polynomials

Open problems

Examples
Strongly polynomial sequences of graphs
From proper colourings to fractional and beyond
Relational structures
Example interpretations
All of them?

Example 5

b

bc
b b b

b

bc

b

bc

b

bc

bc

bb

bc

b

bc

(K�k2 ) = (Qk) (hypercubes)

Proposition (Garijo, G., Nešeťril, 2013+)

hom(G ,Qk) = p(G ; k , 2k) for bivariate polynomial p(G )



Counting graph homomorphisms
Sequences giving graph polynomials

Open problems

Examples
Strongly polynomial sequences of graphs
From proper colourings to fractional and beyond
Relational structures
Example interpretations
All of them?

Example 6

b b

bc

b

bc

b b

bc

bc

b b b

b

(Ck)

hom(C3,C3) = 6, hom(C3,Ck) = 0 when k = 2 or k ≥ 4
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Definition

(Hk) is strongly polynomial (in k) if ∀G ∃ polynomial p(G ) such
that hom(G ,Hk) = p(G ; k) for all k ∈ N.

Example

(Kk), (K 1
k ) are strongly polynomial

(K `
k) is strongly polynomial (in k , `)

(Qk) not strongly polynomial (but polynomial in k and 2k)

(Ck), (Pk) not strongly polynomial (but eventually polynomial
in k)

Proposition (de la Harpe & Jaeger 1995)

Simple graphs (Hk) form strongly polynomial sequence ⇐⇒
∀connected S #{induced subgraphs ∼= S in Hk} polynomial in k
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Definition

Generalized Johnson graph Jk,r ,D , D ⊆ {0, 1, . . . , r}
vertices

([k]
r

)
, edge uv when |u ∩ v | ∈ D

Johnson graphs D = {k − 1} J(k , r)

Kneser graphs D = {0} Kk:r

Petersen graph = K5:2

Figure by Watchduck (a.k.a. Tilman Piesk). Wikimedia Commons
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Johnson graph J(5, 2)
Figure by Watchduck (a.k.a. Tilman Piesk). Wikimedia Commons
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Fractional chromatic number of graph G :

χf (G ) = inf{k
r

: k , r ∈ N, hom(G ,Kk:r ) > 0},

For k ≥ 2r , χ(Kk:r ) = k − 2r + 2 , while χf (Kk:r ) = k
r



Counting graph homomorphisms
Sequences giving graph polynomials

Open problems

Examples
Strongly polynomial sequences of graphs
From proper colourings to fractional and beyond
Relational structures
Example interpretations
All of them?

Fractional chromatic number of graph G :

χf (G ) = inf{k
r

: k , r ∈ N, hom(G ,Kk:r ) > 0},

For k ≥ 2r , χ(Kk:r ) = k − 2r + 2 , while χf (Kk:r ) = k
r



Counting graph homomorphisms
Sequences giving graph polynomials

Open problems

Examples
Strongly polynomial sequences of graphs
From proper colourings to fractional and beyond
Relational structures
Example interpretations
All of them?

Fractional colouring example: C5 to Kk :r
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k = 3, r = 1 k = 6, r = 2 k = 5, r = 2

χ(C5) = 3 but by the homomorphism from C5 to Kneser graph
K5:2 (Petersen graph) χf (C5) ≤ 5

2 (in fact wih equality)
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Proposition

For a graph G and k, r ≥ 1,
hom(G ,Kk:r ) = (r !)−|V (G)|P(G [Kr ]; k).

Proposition (de la Harpe & Jaeger, 1995; Garijo, G., Nešeťril, 2013+)

For every r ,D, sequence (Jk,r ,D) is strongly polynomial (in k).

Proposition (de la Harpe & Jaeger, 1995)

The graph parameter
(k
r

)−c(G)
hom(G , Jk,r ,D) depends only on the

cycle matroid of G .

Problem

Interpret
(k
r

)−c(G)
hom(G , Jk,r ,D) in terms of the cycle matroid of

G alone. In particular, what is its evaluation at k = −1 (acyclic
orientations for the chromatic polynomial = 1,D = {0}).
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Construction [G., Nešeťril, Ossona de Mendez 2014+]

Strongly polynomial sequences by quantifier-free (QF)
interpretation of relational structures.

b b

bc

b

bc

b b

bc

bc

b

Strongly polynomial sequence

bbc

b

bc

b bb

bc

bc

bc

bbc

bc b

bbc

bcb bc

of relational structures

b

b

bc

b

bc

b

b

bc

bc

b interpretation

I

scheme

b b

bc bc

Strongly polynomial sequence of graphs

b b b
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Satisfaction sets

Quantifier-free formula φ with n free variables (φ ∈ QFn) with
symbols from relational structure H with domain V (H).

Satisfaction set φ(H) = {(v1, . . . , vn) ∈ V (H)n : H |= φ}.

e.g. for graph structure H (symmetric binary relation x ∼ y
interpreted as x adjacent to y), and given graph G on n vertices,

φ = φG =
∧

ij∈E(G)

(vi ∼ vj)

φG (H) = {(v1, . . . , vn) : i 7→ vi is a homomorphism G → H}

|φG (H)| = hom(G ,H).



Counting graph homomorphisms
Sequences giving graph polynomials

Open problems

Examples
Strongly polynomial sequences of graphs
From proper colourings to fractional and beyond
Relational structures
Example interpretations
All of them?

Satisfaction sets

Quantifier-free formula φ with n free variables (φ ∈ QFn) with
symbols from relational structure H with domain V (H).

Satisfaction set φ(H) = {(v1, . . . , vn) ∈ V (H)n : H |= φ}.

e.g. for graph structure H (symmetric binary relation x ∼ y
interpreted as x adjacent to y), and given graph G on n vertices,

φ = φG =
∧

ij∈E(G)

(vi ∼ vj)

φG (H) = {(v1, . . . , vn) : i 7→ vi is a homomorphism G → H}

|φG (H)| = hom(G ,H).



Counting graph homomorphisms
Sequences giving graph polynomials

Open problems

Examples
Strongly polynomial sequences of graphs
From proper colourings to fractional and beyond
Relational structures
Example interpretations
All of them?

Satisfaction sets

Quantifier-free formula φ with n free variables (φ ∈ QFn) with
symbols from relational structure H with domain V (H).

Satisfaction set φ(H) = {(v1, . . . , vn) ∈ V (H)n : H |= φ}.

e.g. for graph structure H (symmetric binary relation x ∼ y
interpreted as x adjacent to y), and given graph G on n vertices,

φ = φG =
∧

ij∈E(G)

(vi ∼ vj)

φG (H) = {(v1, . . . , vn) : i 7→ vi is a homomorphism G → H}

|φG (H)| = hom(G ,H).



Counting graph homomorphisms
Sequences giving graph polynomials

Open problems

Examples
Strongly polynomial sequences of graphs
From proper colourings to fractional and beyond
Relational structures
Example interpretations
All of them?

Satisfaction sets

Quantifier-free formula φ with n free variables (φ ∈ QFn) with
symbols from relational structure H with domain V (H).

Satisfaction set φ(H) = {(v1, . . . , vn) ∈ V (H)n : H |= φ}.

e.g. for graph structure H (symmetric binary relation x ∼ y
interpreted as x adjacent to y), and given graph G on n vertices,

φ = φG =
∧

ij∈E(G)

(vi ∼ vj)

φG (H) = {(v1, . . . , vn) : i 7→ vi is a homomorphism G → H}

|φG (H)| = hom(G ,H).
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Strongly polynomial sequences of structures

Definition

Sequence (Hk) of relational structures strongly polynomial iff
∀φ ∈ QF ∃ polynomial r(φ) ∀k ∈ N |φ(Hk)| = r(φ; k)

Lemma

Equivalently,

∀G ∃ polynomial p(G) ∀k ∈ N hom(G,Hk) = p(G; k), or

∀F ∃ polynomial q(F) ∀k ∈ N ind(F,Hk) = q(F; k).

Transitive tournaments (Tk) strongly polynomial sequence of
digraphs (e.g. count induced substructures).
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Graphical QF interpretation schemes

I : Relational σ-structures A −→ Graphs H

Definition (Graphical QF interpretation scheme)

Exponent p ∈ N, formula ι ∈ QFp(σ) and symmetric formula
ρ ∈ QF2p(σ).
For every σ-structure A, the interpretation I (A) has

vertex set V = ι(A),

edge set E = {{u, v} ∈ V × V : A |= ρ(u, v)}.
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Graphical QF interpretation schemes

Example

(Complementation) p = 1, ι = 1 (constantly true),
ρ(x , y) = ¬R(x , y) (R(x , y): adjacency between x and y).

(Square of a graph) p = 1, ι = 1, and
ρ(x , y) = R(x , y) ∨ (∃z R(x , z) ∧ R(z , y))
(requires a quantifier, so not a QF interpretation scheme).
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Graphical QF interpretation schemes

I : Relational σ-structures A −→ Graphs H

Lemma

There is

Ĩ : φ ∈ QF(Graphs) 7−→ Ĩ (φ) ∈ QF(σ-structures)

such that
φ(I (A)) = Ĩ (φ)(A)

In particular, (Ak) strongly polynomial ⇒ (Hk) = (I (Ak))
strongly polynomial.
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From graphs to graphs

All previously known constructions of strongly polynomial
graph sequences (complementation, line graph, disjoint union,
join, direct product,...) special cases of interpretation schemes
I from Marked Graphs (added unary relations) to Graphs.

Cartesian product and other more complicated graph products
are special kinds of such interpretation schemes too.
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Example

(Cartesian product of graphs G1 and G2)

A = G1 t G2

Ui (v) ⇔ v ∈ V (Gi ),

Ri (u, v) ⇔ uv ∈ E (Gi ) (i = 1, 2)

Interpretation scheme I of exponent p = 2 defined on
(U1,U2,R1,R2)-relational structures A by

ι(x1, x2) : U1(x1) ∧ U2(x2)

ρ(x1, x2, y1, y2) : [R1(x1, y1) ∧ (x2 =y2)] ∨ [(x1 =y1) ∧ R2(x2, y2)]
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Require quantifier-free interpretation

b
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b bb

edge uv when

b b b

b b

bc

b

bc

b

bc

bc

b

bc

bc

bc

(u → v) ∧ ¬∃w(u → v ∧w → v)

∨ ∀w(u → w ∧ w → v)

or the same formula
with u and v swapped

Cycles (Ck) from tournaments Tk require quantification.
Sequence (Ck) is not strongly polynomial.
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Example

Generalized Johnson graphs (Jk,r ,D) are QF interpretations of
transitive tournaments:

Ak = Tk , vertices [k], arcs defined by relation R.
For fixed integer r and subset D ⊆ [r ],

ι(x1, . . . , xr ) :
r−1∧
i=1

R(xi , xi+1) vertices r -subsets of [k]

ρ(x1, . . . , xr , y1, . . . , yr ) :
∨

I ,J⊆[r ]
|I |=|J|
|I |∈D

( ∧
i 6∈I ,j 6∈J

¬(xi = yj) ∧
∧
i∈I

∨
j∈J

(xi = yj)

)

edge when subset intersection size is in D
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Example

Generalized Johnson graphs (Jk,r ,D) are QF interpretations of
transitive tournaments:
Ak = Tk , vertices [k], arcs defined by relation R.
For fixed integer r and subset D ⊆ [r ],

ι(x1, . . . , xr ) :
r−1∧
i=1

R(xi , xi+1) vertices r -subsets of [k]

ρ(x1, . . . , xr , y1, . . . , yr ) :
∨

I ,J⊆[r ]
|I |=|J|
|I |∈D

( ∧
i 6∈I ,j 6∈J

¬(xi = yj) ∧
∧
i∈I

∨
j∈J

(xi = yj)

)

edge when subset intersection size is in D
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Corollary is our previous:

Proposition

For every r ,D, sequence (Jk,r ,D) is strongly polynomial (in k).
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Ks/r (s ≥ 2r) circulant graph with vertex set Zs = {0, 1, . . . , s−1},
vertices x , y adjacent if x − y ∈ {r , r + 1, . . . , s − r}. (Ks/1 = Ks)

0

1

2

34
5

6

7

8

9
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11 12

13

14

K15/6

A homomorphism from G to Ks/r is a circular (s, r)-colouring of G .
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Circular chromatic number

χc(G ) = inf{s
r

: s, r ∈ N, hom(G ,Ks/r ) > 0}.

dχc(G )e = χ(G ).

Proper 3-colouring of flower snark J5
Figure by Rocchini, Wikimedia Commons
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Circular chromatic number

χc(G ) = inf{s
r

: s, r ∈ N, hom(G ,Ks/r ) > 0}.

dχc(G )e = χ(G ).

Proper 3-colouring of flower snark J5
Figure by Rocchini, Wikimedia Commons
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Circular chromatic number

χc(G ) = inf{s
r

: s, r ∈ N, hom(G ,Ks/r ) > 0}.

dχc(G )e = χ(G ).

Circular (5, 2)-colouring of flower snark J5
Figure by Koko90, Wikimedia Commons



Counting graph homomorphisms
Sequences giving graph polynomials

Open problems

Examples
Strongly polynomial sequences of graphs
From proper colourings to fractional and beyond
Relational structures
Example interpretations
All of them?

Example

The circulant graphs (Ksk/rk), s ≥ 2r , are QF interpretations of a
pair of transitive tournaments:

Let Ak = Ts ⊕ Tk . Vertices of Ksk/rk : elements (a, b) of A2
k such

that a ∈ Ts and b ∈ Tk . Vertex (a, b) adjacent to vertex (a′, b′) if

a′ = (a + r) mod s and b′ ≥ b,

or a′ between (a + r + 1) mod s and (a + s − r − 1) mod s,

or a′ = (a− r) mod s and b′ ≤ b.

Proposition

For graph G and integers s ≥ 2r , the number of circular
(sk, rk)-colourings of G is polynomial in k.
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k such
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or a′ between (a + r + 1) mod s and (a + s − r − 1) mod s,
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Proposition

For graph G and integers s ≥ 2r , the number of circular
(sk, rk)-colourings of G is polynomial in k.
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Conjecture

All strongly polynomial sequences of graphs (Hk) such that
Hk ⊆ind Hk+1 can be obtained by QF interpretation of a ”basic
sequence” (disjoint union of transitive tournaments of size
polynomial in k with unary relations).

Theorem (G., Nešeťril, Ossona de Mendez , 2014+)

A sequence (Hk) of graphs of uniformly bounded degree is a
strongly polynomial sequence if and only if it is a QF-interpretation
of a basic sequence.
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Counting graph homomorphisms
Sequences giving graph polynomials

Open problems

I When is hom(G ,Cayley(Ak ,Bk)) a fixed polynomial
(dependent on G ) in |Ak |, |Bk |, where Bk = −Bk ⊆ Ak?

(hypercubes) hom(G ,Cayley(Zk
2 ,S1)) polynomial in 2k and k

(S1 = {weight 1 vectors}). [Garijo, G., Nešeťril 2013+]
For D ⊂ N, hom(G ,Cayley(Zk ,±D)) is polynomial in k for
sufficiently large k iff D is finite or cofinite. [de la Harpe &
Jaeger, 1995]
(circular colourings)
hom(G ,Cayley(Zks , {kr , kr+1, . . . , k(s−r)})) polynomial in
k. [G., Nešeťril, Ossona de Mendez 2014+]

I Which graph polynomials defined by strongly polynomial
sequences of graphs satisfy a reduction formula
(size-decreasing recurrence) like the chromatic polynomial and
independence polynomial?

I Which strongly polynomial sequences of graphs give matroid
invariants (suitably scaled like the chromatic polynomial)?
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k . [G., Nešeťril, Ossona de Mendez 2014+]

I Which graph polynomials defined by strongly polynomial
sequences of graphs satisfy a reduction formula
(size-decreasing recurrence) like the chromatic polynomial and
independence polynomial?

I Which strongly polynomial sequences of graphs give matroid
invariants (suitably scaled like the chromatic polynomial)?



Counting graph homomorphisms
Sequences giving graph polynomials

Open problems

I When is hom(G ,Cayley(Ak ,Bk)) a fixed polynomial
(dependent on G ) in |Ak |, |Bk |, where Bk = −Bk ⊆ Ak?

(hypercubes) hom(G ,Cayley(Zk
2 ,S1)) polynomial in 2k and k

(S1 = {weight 1 vectors}). [Garijo, G., Nešeťril 2013+]
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Open problems

Beyond polynomials? Rational generating functions

I For strongly polynomial sequence (Hk),∑
k

hom(G ,Hk)tk =
PG (t)

(1− t)|V (G)|+1

with polynomial PG (t) of degree at most |V (G )|.

I For eventually polynomial sequence (Hk) such as (Ck),∑
k

hom(G ,Hk)tk =
PG (t)

(1− t)|V (G)|+1

with polynomial PG (t).
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Beyond polynomials? Rational generating functions

I For quasipolynomial sequence of Turán graphs (Tk,r )

∑
k

hom(G ,Tk,r )tk =
PG (t)

Q(t)|V (G)|+1

with polynomial PG (t) of degree at most |V (G )| and
polynomial Q(t) with zeros r th roots of unity.

I For sequence of hypercubes (Qk),∑
k

hom(G ,Qk)tk =
PG (t)

Q(t)|V (G)|+1

with polynomial PG (t) of degree at most |V (G )| and
polynomial Q(t) with zeros powers of 2.
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∑
k

hom(G ,Tk,r )tk =
PG (t)
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polynomial Q(t) with zeros r th roots of unity.

I For sequence of hypercubes (Qk),∑
k
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with polynomial PG (t) of degree at most |V (G )| and
polynomial Q(t) with zeros powers of 2.
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Beyond polynomials? Algebraic generating functions

I For sequence of odd graphs Ok = J2k−1,k−1,{0}∑
k

hom(G ,Ok)tk

is algebraic (e.g. 1
2(1− 4t)−

1
2 when G = K1).
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Three papers

P. de la Harpe and F. Jaeger, Chromatic invariants for finite graphs:
theme and polynomial variations, Lin. Algebra Appl. 226–228
(1995), 687–722

Defining graphs invariants from counting graph homomorphisms.
Examples. Basic constructions.

D. Garijo, A. Goodall, J. Nešeťril, Polynomial graph invariants from
homomorphism numbers. 40pp. arXiv: 1308.3999 [math.CO]
Further examples. New construction using tree representations of
graphs.

A. Goodall, J. Nešeťril, P. Ossona de Mendez, Strongly polynomial
sequences as interpretation of trivial structures. 21pp.
arXiv:1405.2449 [math.CO].

General relational structures: counting satisfying assignments for
quantifier-free formulas. Building new polynomial invariants by
interpretation of ”trivial” sequences of marked tournaments.
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Prime power q = pd ≡ 1 (mod 4)
Paley graph Pq =Cayley(Fq,non-zero squares),

Quasi-random graphs: hom(G ,Pq)/hom(G ,Gq, 1
2
)→ 1 as q →∞.

Proposition (Corollary to result of de la Harpe & Jaeger, 1995)

hom(G ,Pq) is polynomial in q for series-parallel G .
e.g. hom(K3,Pq) = q(q−1)(q−5)

8

Prime q ≡ 1 (mod 4), q = 4x2 + y2, [Evans, Pulham, Sheehan, 1981]:

hom(K4,Pq) =
q(q − 1)

1536

(
(q − 9)2 − 4x2

)
Is hom(G ,Pq) polynomial in q and x for all graphs G?

Theorem (G., Nešeťril, Ossona de Mendez , 2014+)

If (Hk) is strongly polynomial then there are only finitely many
terms belonging to a quasi-random sequence of graphs.
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