Graph polynomials by counting graph homomorphisms

Delia Garijo ${ }^{1}$ Andrew Goodall ${ }^{2}$ Patrice Ossona de Mendez ${ }^{3}$ Jarik Nešetřil ${ }^{2}$

${ }^{1}$ University of Seville, Spain
${ }^{2}$ Charles University, Prague
${ }^{3}$ CAMS, CNRS/EHESS, Paris, France

Tutte Polynomial Workshop
12 July 2015
Royal Holloway, University of London

Chromatic polynomial

Definition by evaluations at positive integers
$k \in \mathbb{N}, \quad P(G ; k)=\#\{$ proper vertex k-colourings of $G\}$.

Chromatic polynomial

Definition by evaluations at positive integers
$k \in \mathbb{N}, \quad P(G ; k)=\#\{$ proper vertex k-colourings of $G\}$.

$$
P(G ; k)=\sum_{1 \leq j \leq|V(G)|}(-1)^{j} b_{j}(G) k^{|V(G)|-j}
$$

$b_{j}(G)=\#\{j$-subsets of $E(G)$ containing no broken cycle $\}$.

Chromatic polynomial

Definition by evaluations at positive integers
$k \in \mathbb{N}, \quad P(G ; k)=\#\{$ proper vertex k-colourings of $G\}$.

$$
P(G ; k)=\sum_{1 \leq j \leq|V(G)|}(-1)^{j} b_{j}(G) k^{|V(G)|-j}
$$

$b_{j}(G)=\#\{j$-subsets of $E(G)$ containing no broken cycle $\}$.
$(-1)^{|V(G)|} P(G ;-1)=\#\{$ acyclic orientations of $G\}$

Chromatic polynomial

Definition by evaluations at positive integers
$k \in \mathbb{N}, \quad P(G ; k)=\#\{$ proper vertex k-colourings of $G\}$.

$$
P(G ; k)=\sum_{1 \leq j \leq|V(G)|}(-1)^{j} b_{j}(G) k^{|V(G)|-j}
$$

$b_{j}(G)=\#\{j$-subsets of $E(G)$ containing no broken cycle $\}$.

$$
\begin{aligned}
& (-1)^{|V(G)|} P(G ;-1)=\#\{\text { acyclic orientations of } G\} \\
& u v \in E(G), \quad P(G ; k)=P(G \backslash u v ; k)-P(G / u v ; k)
\end{aligned}
$$

Graph polynomials

Graph homomorphisms

Independence polynomial

Definition by coefficients

$$
\begin{gathered}
I(G ; x)=\sum_{1 \leq j \leq|V(G)|} b_{j}(G) x^{j} \\
b_{j}(G)=\#\{\text { independent subsets of } V(G) \text { of size } j\} .
\end{gathered}
$$

Independence polynomial

Definition by coefficients

$$
I(G ; x)=\sum_{1 \leq j \leq|V(G)|} b_{j}(G) x^{j},
$$

$$
b_{j}(G)=\#\{\text { independent subsets of } V(G) \text { of size } j\}
$$

$$
v \in V(G), \quad I(G ; x)=I(G-v ; x)+x I(G-N[v] ; x)
$$

Counting graph homomorphisms Sequences giving graph polynomials Open problems

Definition

Graphs G, H.
$f: V(G) \rightarrow V(H)$ is a homomorphism from G to H if $u v \in E(G) \Rightarrow f(u) f(v) \in E(H)$.

Definition

Graphs G, H.
$f: V(G) \rightarrow V(H)$ is a homomorphism from G to H if $u v \in E(G) \Rightarrow f(u) f(v) \in E(H)$.

Definition

H with adjacency matrix $\left(a_{s, t}\right)$, weight $a_{s, t}$ on $s t \in E(H)$,

$$
\operatorname{hom}(G, H)=\sum_{f: V(G) \rightarrow V(H)} \prod_{u v \in E(G)} a_{f(u), f(v)}
$$

Definition

Graphs G, H.
$f: V(G) \rightarrow V(H)$ is a homomorphism from G to H if $u v \in E(G) \Rightarrow f(u) f(v) \in E(H)$.

Definition

H with adjacency matrix $\left(a_{s, t}\right)$, weight $a_{s, t}$ on $s t \in E(H)$,

$$
\operatorname{hom}(G, H)=\sum_{f: V(G) \rightarrow V(H)} \prod_{u v \in E(G)} a_{f(u), f(v)}
$$

$\operatorname{hom}(G, H)=\#\{$ homomorphisms from G to $H\}$

$$
=\#\{H \text {-colourings of } G\}
$$

when H simple $\left(a_{s, t} \in\{0,1\}\right)$ or multigraph $\left(a_{s, t} \in \mathbb{N}\right)$

Examples

Strongly polynomial sequences of graphs
From proper colourings to fractional and beyond
Relational structures
Example interpretations
All of them?

Example 1

Counting graph homomorphisms

 Sequences giving graph polynomials Open problems
Examples

Strongly polynomial sequences of graphs
From proper colourings to fractional and beyond
Relational structures
Example interpretations
All of them?

Example 1

Strongly polynomial sequences of graphs
From proper colourings to fractional and beyond Relational structures
Example interpretations
All of them?

The main question

Which sequences $\left(H_{k, \ell, \ldots}\right)$ of simple graphs are such that, for all graphs G, for each $k, \ell, \cdots \in \mathbb{N}$ we have

$$
\operatorname{hom}\left(G, H_{k, \ell, \ldots}\right)=p(G ; k, \ell, \ldots)
$$

for polynomial $p(G)$?

The main question

Which sequences $\left(H_{k, \ell, \ldots}\right)$ of simple graphs are such that, for all graphs G, for each $k, \ell, \cdots \in \mathbb{N}$ we have

$$
\operatorname{hom}\left(G, H_{k, \ell, \ldots}\right)=p(G ; k, \ell, \ldots)
$$

for polynomial $p(G)$?

Characterizing simple graph sequences $\left(H_{k, \ell, \ldots}\right)$ with this property gives straightforward characterization for multigraph sequences too (allowing multiple edges \& loops).

Examples

Strongly polynomial sequences of graphs
From proper colourings to fractional and beyond
Relational structures
Example interpretations
All of them?

Example 2: add loops

Strongly polynomial sequences of graphs
From proper colourings to fractional and beyond
Relational structures
Example interpretations
All of them?

Example 3: add ℓ loops

Example 3: add ℓ loops

$$
\begin{aligned}
& \operatorname{hom}\left(G, K_{k}^{\ell}\right)= \\
= & k_{f: V(G) \rightarrow[k]} \ell^{\#\{(G)}(\ell-1)^{r(G)} T\left(G ; \frac{\ell-1+k}{\ell-1}, \ell\right) \text { (Tutte polynomial) }
\end{aligned}
$$

Examples

Strongly polynomial sequences of graphs From proper colourings to fractional and beyond Relational structures
Example interpretations
All of them?

Example 4

$$
\left(K_{1}^{1}+K_{1, k}\right)
$$

Strongly polynomial sequences of graphs
From proper colourings to fractional and beyond
Relational structures
Example interpretations
All of them?

Example 4

$$
\left(K_{1}^{1}+K_{1, k}\right)
$$

$$
\operatorname{hom}\left(G, K_{1}^{1}+K_{1, k}\right)=I(G ; k)
$$

independence polynomial

Examples

Strongly polynomial sequences of graphs
From proper colourings to fractional and beyond
Relational structures
Example interpretations
All of them?

Example 5

$$
\left(K_{2}^{\square k}\right)=\left(Q_{k}\right) \text { (hypercubes) }
$$

Strongly polynomial sequences of graphs
From proper colourings to fractional and beyond
Relational structures
Example interpretations
All of them?

Example 5

$$
\left(K_{2}^{\square k}\right)=\left(Q_{k}\right) \text { (hypercubes) }
$$

Proposition (Garijo, G., Nešetřil, 2013+)

$\operatorname{hom}\left(G, Q_{k}\right)=p\left(G ; k, 2^{k}\right)$ for bivariate polynomial $p(G)$

Examples

Strongly polynomial sequences of graphs
From proper colourings to fractional and beyond
Relational structures
Example interpretations
All of them?

Example 6

$\left(C_{k}\right)$
$\operatorname{hom}\left(C_{3}, C_{3}\right)=6, \operatorname{hom}\left(C_{3}, C_{k}\right)=0$ when $k=2$ or $k \geq 4$

Strongly polynomial sequences of graphs
From proper colourings to fractional and beyond
Relational structures
Example interpretations
All of them?

Definition

$\left(H_{k}\right)$ is strongly polynomial (in k) if $\forall G \exists$ polynomial $p(G)$ such that $\operatorname{hom}\left(G, H_{k}\right)=p(G ; k)$ for all $k \in \mathbb{N}$.

Strongly polynomial sequences of graphs
From proper colourings to fractional and beyond
Relational structures
Example interpretations
All of them?

Definition

$\left(H_{k}\right)$ is strongly polynomial (in k) if $\forall G \exists$ polynomial $p(G)$ such that $\operatorname{hom}\left(G, H_{k}\right)=p(G ; k)$ for all $k \in \mathbb{N}$.

Example

- $\left(K_{k}\right),\left(K_{k}^{1}\right)$ are strongly polynomial
- $\left(K_{k}^{\ell}\right)$ is strongly polynomial (in k, ℓ)

Definition

$\left(H_{k}\right)$ is strongly polynomial (in k) if $\forall G \exists$ polynomial $p(G)$ such that $\operatorname{hom}\left(G, H_{k}\right)=p(G ; k)$ for all $k \in \mathbb{N}$.

Example

- $\left(K_{k}\right),\left(K_{k}^{1}\right)$ are strongly polynomial
- $\left(K_{k}^{\ell}\right)$ is strongly polynomial (in $\left.k, \ell\right)$
- $\left(Q_{k}\right)$ not strongly polynomial (but polynomial in k and 2^{k})

Definition

$\left(H_{k}\right)$ is strongly polynomial (in k) if $\forall G \exists$ polynomial $p(G)$ such that $\operatorname{hom}\left(G, H_{k}\right)=p(G ; k)$ for all $k \in \mathbb{N}$.

Example

- $\left(K_{k}\right),\left(K_{k}^{1}\right)$ are strongly polynomial
- $\left(K_{k}^{\ell}\right)$ is strongly polynomial (in k, ℓ)
- $\left(Q_{k}\right)$ not strongly polynomial (but polynomial in k and 2^{k})
- $\left(C_{k}\right),\left(P_{k}\right)$ not strongly polynomial (but eventually polynomial in k)

Definition

$\left(H_{k}\right)$ is strongly polynomial (in k) if $\forall G \exists$ polynomial $p(G)$ such that $\operatorname{hom}\left(G, H_{k}\right)=p(G ; k)$ for all $k \in \mathbb{N}$.

Example

- $\left(K_{k}\right),\left(K_{k}^{1}\right)$ are strongly polynomial
- $\left(K_{k}^{\ell}\right)$ is strongly polynomial (in $\left.k, \ell\right)$
- $\left(Q_{k}\right)$ not strongly polynomial (but polynomial in k and 2^{k})
- $\left(C_{k}\right),\left(P_{k}\right)$ not strongly polynomial (but eventually polynomial in k)

Proposition (de la Harpe \& Jaeger 1995)

Simple graphs $\left(H_{k}\right)$ form strongly polynomial sequence \forall connected $S \#\left\{\right.$ induced subgraphs $\cong S$ in $\left.H_{k}\right\}$ polynomial in k

Counting graph homomorphisms Sequences giving graph polynomials

Open problems

Strongly polynomial sequences of graphs From proper colourings to fractional and beyond Relational structures
Example interpretations
All of them?

Definition

Generalized Johnson graph $J_{k, r, D}, D \subseteq\{0,1, \ldots, r\}$ vertices $\binom{[k]}{r}$, edge $u v$ when $|u \cap v| \in D$

Definition

Generalized Johnson graph $J_{k, r, D}, D \subseteq\{0,1, \ldots, r\}$ vertices $\binom{[k]}{r}$, edge $u v$ when $|u \cap v| \in D$

- Johnson graphs $D=\{k-1\} \quad J(k, r)$
- Kneser graphs $D=\{0\} \quad K_{k: r}$

Definition

Generalized Johnson graph $J_{k, r, D}, D \subseteq\{0,1, \ldots, r\}$ vertices $\binom{[k]}{r}$, edge $u v$ when $|u \cap v| \in D$

- Johnson graphs $D=\{k-1\} \quad J(k, r)$
- Kneser graphs $D=\{0\} \quad K_{k: r}$

Petersen graph $=K_{5: 2}$

Strongly polynomial sequences of graphs
From proper colourings to fractional and beyond
Relational structures
Example interpretations
All of them?

Johnson graph $J(5,2)$
Figure by Watchduck (a.k.a. Tilman Piesk). Wikimedia Commons

Fractional chromatic number of graph G :

$$
\chi_{f}(G)=\inf \left\{\frac{k}{r}: k, r \in \mathbb{N}, \operatorname{hom}\left(G, K_{k: r}\right)>0\right\}
$$

Fractional chromatic number of graph G :

$$
\chi_{f}(G)=\inf \left\{\frac{k}{r}: k, r \in \mathbb{N}, \operatorname{hom}\left(G, K_{k: r}\right)>0\right\}
$$

For $k \geq 2 r, \chi\left(K_{k: r}\right)=k-2 r+2$, while $\chi_{f}\left(K_{k: r}\right)=\frac{k}{r}$

Fractional colouring example: C_{5} to $K_{k: r}$

$k=6, r=2$

$k=5, r=2$
$\chi\left(C_{5}\right)=3$ but by the homomorphism from C_{5} to Kneser graph $K_{5: 2}$ (Petersen graph) $\chi_{f}\left(C_{5}\right) \leq \frac{5}{2}$ (in fact wih equality)

Counting graph homomorphisms Sequences giving graph polynomials Open problems

Strongly polynomial sequences of graphs
From proper colourings to fractional and beyond Relational structures
Example interpretations
All of them?

Proposition

For a graph G and $k, r \geq 1$, $\operatorname{hom}\left(G, K_{k: r}\right)=(r!)^{-|V(G)|} P\left(G\left[K_{r}\right] ; k\right)$.

Proposition

For a graph G and $k, r \geq 1$, $\operatorname{hom}\left(G, K_{k: r}\right)=(r!)^{-|V(G)|} P\left(G\left[K_{r}\right] ; k\right)$.

Proposition (de la Harpe \& Jaeger, 1995; Garijo, G., Nešetřil, 2013+)
For every r, D, sequence $\left(J_{k, r, D}\right)$ is strongly polynomial (in k).

Proposition

For a graph G and $k, r \geq 1$, $\operatorname{hom}\left(G, K_{k: r}\right)=(r!)^{-|V(G)|} P\left(G\left[K_{r}\right] ; k\right)$.

Proposition (de la Harpe \& Jaeger, 1995; Garijo, G., Nešetřil, 2013+)
For every r, D, sequence $\left(J_{k, r, D}\right)$ is strongly polynomial (in k).
Proposition (de la Harpe \& Jaeger, 1995)
The graph parameter $\binom{k}{r}^{-c(G)} \operatorname{hom}\left(G, J_{k, r, D}\right)$ depends only on the cycle matroid of G.

Proposition

For a graph G and $k, r \geq 1$, $\operatorname{hom}\left(G, K_{k: r}\right)=(r!)^{-|V(G)|} P\left(G\left[K_{r}\right] ; k\right)$.

Proposition (de la Harpe \& Jaeger, 1995; Garijo, G., Nešetřil, 2013+)
For every r, D, sequence $\left(J_{k, r, D}\right)$ is strongly polynomial (in k).

Proposition (de la Harpe \& Jaeger, 1995)

The graph parameter $\binom{k}{r}^{-c(G)} \operatorname{hom}\left(G, J_{k, r, D}\right)$ depends only on the cycle matroid of G.

Problem

Interpret $\binom{k}{r}^{-c(G)} \operatorname{hom}\left(G, J_{k, r, D}\right)$ in terms of the cycle matroid of G alone.

Proposition

For a graph G and $k, r \geq 1$, $\operatorname{hom}\left(G, K_{k: r}\right)=(r!)^{-|V(G)|} P\left(G\left[K_{r}\right] ; k\right)$.

Proposition (de la Harpe \& Jaeger, 1995; Garijo, G., Nešetřil, 2013+)
For every r, D, sequence $\left(J_{k, r, D}\right)$ is strongly polynomial (in k).

Proposition (de la Harpe \& Jaeger, 1995)

The graph parameter $\binom{k}{r}^{-c(G)} \operatorname{hom}\left(G, J_{k, r, D}\right)$ depends only on the cycle matroid of G.

Problem

Interpret $\binom{k}{r}^{-c(G)} \operatorname{hom}\left(G, J_{k, r, D}\right)$ in terms of the cycle matroid of G alone. In particular, what is its evaluation at $k=-1$ (acyclic orientations for the chromatic polynomial $=1, D=\{0\}$).

Counting graph homomorphisms Sequences giving graph polynomials

Strongly polynomial sequences of graphs
From proper colourings to fractional and beyond
Relational structures
Example interpretations
All of them?

Construction [G., Nešetřil, Ossona de Mendez 2014+]

Strongly polynomial sequences by quantifier-free (QF) interpretation of relational structures.

Strongly polynomial sequence of relational structures

Satisfaction sets

Quantifier-free formula ϕ with n free variables $\left(\phi \in \mathrm{QF}_{n}\right)$ with symbols from relational structure \mathbf{H} with domain $V(\mathbf{H})$.

Satisfaction set $\phi(\mathbf{H})=\left\{\left(v_{1}, \ldots, v_{n}\right) \in V(\mathbf{H})^{n}: \mathbf{H} \models \phi\right\}$.

Satisfaction sets

Quantifier-free formula ϕ with n free variables $\left(\phi \in \mathrm{QF}_{n}\right)$ with symbols from relational structure \mathbf{H} with domain $V(\mathbf{H})$.

Satisfaction set $\phi(\mathbf{H})=\left\{\left(v_{1}, \ldots, v_{n}\right) \in V(\mathbf{H})^{n}: \mathbf{H} \models \phi\right\}$.
e.g. for graph structure H (symmetric binary relation $x \sim y$ interpreted as x adjacent to y), and given graph G on n vertices,

$$
\phi=\phi_{G}=\bigwedge_{i j \in E(G)}\left(v_{i} \sim v_{j}\right)
$$

Satisfaction sets

Quantifier-free formula ϕ with n free variables $\left(\phi \in \mathrm{QF}_{n}\right)$ with symbols from relational structure \mathbf{H} with domain $V(\mathbf{H})$.

Satisfaction set $\phi(\mathbf{H})=\left\{\left(v_{1}, \ldots, v_{n}\right) \in V(\mathbf{H})^{n}: \mathbf{H} \models \phi\right\}$.
e.g. for graph structure H (symmetric binary relation $x \sim y$ interpreted as x adjacent to y), and given graph G on n vertices,

$$
\begin{gathered}
\phi=\phi_{G}=\bigwedge_{i j \in E(G)}\left(v_{i} \sim v_{j}\right) \\
\phi_{G}(H)=\left\{\left(v_{1}, \ldots, v_{n}\right): i \mapsto v_{i} \text { is a homomorphism } G \rightarrow H\right\}
\end{gathered}
$$

Satisfaction sets

Quantifier-free formula ϕ with n free variables $\left(\phi \in \mathrm{QF}_{n}\right)$ with symbols from relational structure \mathbf{H} with domain $V(\mathbf{H})$.

Satisfaction set $\phi(\mathbf{H})=\left\{\left(v_{1}, \ldots, v_{n}\right) \in V(\mathbf{H})^{n}: \mathbf{H} \models \phi\right\}$.
e.g. for graph structure H (symmetric binary relation $x \sim y$ interpreted as x adjacent to y), and given graph G on n vertices,

$$
\begin{gathered}
\phi=\phi_{G}=\bigwedge_{i j \in E(G)}\left(v_{i} \sim v_{j}\right) \\
\phi_{G}(H)=\left\{\left(v_{1}, \ldots, v_{n}\right): i \mapsto v_{i} \text { is a homomorphism } G \rightarrow H\right\} \\
\left|\phi_{G}(H)\right|=\operatorname{hom}(G, H)
\end{gathered}
$$

Strongly polynomial sequences of structures

Definition

Sequence $\left(\mathbf{H}_{k}\right)$ of relational structures strongly polynomial iff $\forall \phi \in Q F \exists$ polynomial $r(\phi) \forall k \in \mathbb{N} \quad\left|\phi\left(\mathbf{H}_{k}\right)\right|=r(\phi ; k)$

Strongly polynomial sequences of structures

Definition

Sequence $\left(\mathbf{H}_{k}\right)$ of relational structures strongly polynomial iff $\forall \phi \in Q F \exists$ polynomial $r(\phi) \forall k \in \mathbb{N} \quad\left|\phi\left(\mathbf{H}_{k}\right)\right|=r(\phi ; k)$

Lemma

Equivalently,

- $\forall \mathbf{G} \exists$ polynomial $p(\mathbf{G}) \forall k \in \mathbb{N} \quad \operatorname{hom}\left(\mathbf{G}, \mathbf{H}_{k}\right)=p(\mathbf{G} ; k)$, or
- $\forall \mathbf{F} \exists$ polynomial $q(\mathbf{F}) \forall k \in \mathbb{N} \quad \operatorname{ind}\left(\mathbf{F}, \mathbf{H}_{k}\right)=q(\mathbf{F} ; k)$.

Strongly polynomial sequences of structures

Definition

Sequence $\left(\mathbf{H}_{k}\right)$ of relational structures strongly polynomial iff $\forall \phi \in Q F \exists$ polynomial $r(\phi) \forall k \in \mathbb{N} \quad\left|\phi\left(\mathbf{H}_{k}\right)\right|=r(\phi ; k)$

Lemma

Equivalently,

- $\forall \mathbf{G} \exists$ polynomial $p(\mathbf{G}) \forall k \in \mathbb{N} \quad \operatorname{hom}\left(\mathbf{G}, \mathbf{H}_{k}\right)=p(\mathbf{G} ; k)$, or
- $\forall \mathbf{F} \exists$ polynomial $q(\mathbf{F}) \forall k \in \mathbb{N} \quad \operatorname{ind}\left(\mathbf{F}, \mathbf{H}_{k}\right)=q(\mathbf{F} ; k)$.

Transitive tournaments (\mathbf{T}_{k}) strongly polynomial sequence of digraphs (e.g. count induced substructures).

Strongly polynomial sequences of graphs
From proper colourings to fractional and beyond
Relational structures
Example interpretations
All of them?

Graphical QF interpretation schemes

I: Relational σ-structures $\mathbf{A} \longrightarrow \quad$ Graphs H

Graphical QF interpretation schemes

I: Relational σ-structures $\mathbf{A} \longrightarrow \quad$ Graphs H

Definition (Graphical QF interpretation scheme)

Exponent $p \in \mathbb{N}$, formula $\iota \in \mathrm{QF}_{p}(\sigma)$ and symmetric formula $\rho \in \mathrm{QF}_{2 p}(\sigma)$.
For every σ-structure \mathbf{A}, the interpretation $I(\mathbf{A})$ has

$$
\text { vertex set } \quad V=\iota(\mathbf{A})
$$

edge set $E=\{\{\mathbf{u}, \mathbf{v}\} \in V \times V: \mathbf{A} \models \rho(\mathbf{u}, \mathbf{v})\}$.

Graphical QF interpretation schemes

Example

- (Complementation) $p=1, \iota=1$ (constantly true), $\rho(x, y)=\neg R(x, y)(R(x, y)$: adjacency between x and $y)$.

Graphical QF interpretation schemes

Example

- (Complementation) $p=1, \iota=1$ (constantly true), $\rho(x, y)=\neg R(x, y)(R(x, y)$: adjacency between x and $y)$.
- (Square of a graph) $p=1, \iota=1$, and $\rho(x, y)=R(x, y) \vee(\exists z R(x, z) \wedge R(z, y))$ (requires a quantifier, so not a QF interpretation scheme).

Graphical QF interpretation schemes

I : Relational σ-structures $\mathbf{A} \longrightarrow \quad$ Graphs H

Lemma

There is

$$
\tilde{I}: \phi \in \mathrm{QF}(\text { Graphs }) \quad \longmapsto \tilde{I}(\phi) \in \mathrm{QF}(\sigma \text {-structures })
$$

such that

$$
\phi(I(\mathbf{A}))=\widetilde{I}(\phi)(\mathbf{A})
$$

In particular, $\left(\mathbf{A}_{k}\right)$ strongly polynomial $\quad \Rightarrow \quad\left(H_{k}\right)=\left(I\left(\mathbf{A}_{k}\right)\right)$ strongly polynomial.

From graphs to graphs

- All previously known constructions of strongly polynomial graph sequences (complementation, line graph, disjoint union, join, direct product,...) special cases of interpretation schemes I from Marked Graphs (added unary relations) to Graphs.

From graphs to graphs

- All previously known constructions of strongly polynomial graph sequences (complementation, line graph, disjoint union, join, direct product,...) special cases of interpretation schemes I from Marked Graphs (added unary relations) to Graphs.
- Cartesian product and other more complicated graph products are special kinds of such interpretation schemes too.

Example

(Cartesian product of graphs G_{1} and G_{2})

$$
\begin{gathered}
\mathbf{A}=G_{1} \sqcup G_{2} \\
U_{i}(v) \quad \Leftrightarrow \quad v \in V\left(G_{i}\right), \\
R_{i}(u, v) \Leftrightarrow \quad u v \in E\left(G_{i}\right) \quad(i=1,2)
\end{gathered}
$$

Example

(Cartesian product of graphs G_{1} and G_{2})

$$
\begin{gathered}
\mathbf{A}=G_{1} \sqcup G_{2} \\
U_{i}(v) \quad \Leftrightarrow \quad v \in V\left(G_{i}\right), \\
R_{i}(u, v) \quad \Leftrightarrow \quad u v \in E\left(G_{i}\right) \quad(i=1,2)
\end{gathered}
$$

Interpretation scheme I of exponent $p=2$ defined on $\left(U_{1}, U_{2}, R_{1}, R_{2}\right)$-relational structures \mathbf{A} by

$$
\begin{gathered}
\iota\left(x_{1}, x_{2}\right): U_{1}\left(x_{1}\right) \wedge U_{2}\left(x_{2}\right) \\
\rho\left(x_{1}, x_{2}, y_{1}, y_{2}\right):\left[R_{1}\left(x_{1}, y_{1}\right) \wedge\left(x_{2}=y_{2}\right)\right] \vee\left[\left(x_{1}=y_{1}\right) \wedge R_{2}\left(x_{2}, y_{2}\right)\right]
\end{gathered}
$$

Require quantifier-free interpretation

Cycles $\left(C_{k}\right)$ from tournaments \mathbf{T}_{k} require quantification. Sequence $\left(C_{k}\right)$ is not strongly polynomial.

Strongly polynomial sequences of graphs
From proper colourings to fractional and beyond
Relational structures
Example interpretations
All of them?

Example

Generalized Johnson graphs ($J_{k, r, D}$) are QF interpretations of transitive tournaments:

Example

Generalized Johnson graphs $\left(J_{k, r, D}\right)$ are QF interpretations of transitive tournaments:
$\mathbf{A}_{k}=\mathbf{T}_{k}$, vertices $[k]$, arcs defined by relation R.
For fixed integer r and subset $D \subseteq[r]$,

$$
\begin{aligned}
\iota\left(x_{1}, \ldots, x_{r}\right) & : \bigwedge_{i=1}^{r-1} R\left(x_{i}, x_{i+1}\right) \quad \text { vertices } r \text {-subsets of }[k] \\
\rho\left(x_{1}, \ldots, x_{r}, y_{1}, \ldots, y_{r}\right) & : \bigvee_{\substack{I, J \subseteq[r] \\
|I|=|J| \\
|I| \in D}}\left(\bigwedge_{i \notin I, j \notin J} \neg\left(x_{i}=y_{j}\right) \wedge \bigwedge_{i \in I} \bigvee_{j \in J}\left(x_{i}=y_{j}\right)\right) \\
& \text { edge when subset intersection size is in } D
\end{aligned}
$$

Corollary is our previous:

Proposition

For every r, D, sequence $\left(J_{k, r, D}\right)$ is strongly polynomial (in k).

Strongly polynomial sequences of graphs
From proper colourings to fractional and beyond
Relational structures
Example interpretations
All of them?
$K_{s / r}(s \geq 2 r)$ circulant graph with vertex set $\mathbb{Z}_{s}=\{0,1, \ldots, s-1\}$, vertices x, y adjacent if $x-y \in\{r, r+1, \ldots, s-r\}$. $\left(K_{s / 1}=K_{s}\right)$

$K_{15 / 6}$
$K_{s / r}(s \geq 2 r)$ circulant graph with vertex set $\mathbb{Z}_{s}=\{0,1, \ldots, s-1\}$, vertices x, y adjacent if $x-y \in\{r, r+1, \ldots, s-r\}$. $\left(K_{s / 1}=K_{s}\right)$

$K_{15 / 6}$
A homomorphism from G to $K_{s / r}$ is a circular (s, r)-colouring of G.

Circular chromatic number

$$
\begin{gathered}
\chi_{c}(G)=\inf \left\{\frac{s}{r}: s, r \in \mathbb{N}, \operatorname{hom}\left(G, K_{s / r}\right)>0\right\} . \\
\left\lceil\chi_{c}(G)\right\rceil=\chi(G) .
\end{gathered}
$$

Circular chromatic number

$$
\begin{gathered}
\chi_{c}(G)=\inf \left\{\frac{s}{r}: s, r \in \mathbb{N}, \operatorname{hom}\left(G, K_{s / r}\right)>0\right\} \\
\left\lceil\chi_{c}(G)\right\rceil=\chi(G)
\end{gathered}
$$

Proper 3-colouring of flower snark J_{5}

Circular chromatic number

$$
\chi_{c}(G)=\inf \left\{\frac{s}{r}: s, r \in \mathbb{N}, \operatorname{hom}\left(G, K_{s / r}\right)>0\right\}
$$

$$
\left\lceil\chi_{c}(G)\right\rceil=\chi(G)
$$

Circular (5, 2)-colouring of flower snark J_{5}

Example

The circulant graphs $\left(K_{s k / r k}\right), s \geq 2 r$, are QF interpretations of a pair of transitive tournaments:

Example

The circulant graphs $\left(K_{s k} / r k\right), s \geq 2 r$, are QF interpretations of a pair of transitive tournaments:
Let $\mathbf{A}_{k}=\mathbf{T}_{s} \oplus \mathbf{T}_{k}$. Vertices of $K_{s k / r k}$: elements (a, b) of A_{k}^{2} such that $a \in \mathbf{T}_{s}$ and $b \in \mathbf{T}_{k}$. Vertex (a, b) adjacent to vertex $\left(a^{\prime}, b^{\prime}\right)$ if

- $a^{\prime}=(a+r) \bmod s$ and $b^{\prime} \geq b$,
- or a^{\prime} between $(a+r+1) \bmod s$ and $(a+s-r-1) \bmod s$,
- or $a^{\prime}=(a-r) \bmod s$ and $b^{\prime} \leq b$.

Example

The circulant graphs $\left(K_{s k / r k}\right), s \geq 2 r$, are QF interpretations of a pair of transitive tournaments:
Let $\mathbf{A}_{k}=\mathbf{T}_{s} \oplus \mathbf{T}_{k}$. Vertices of $K_{s k / r k}$: elements (a, b) of A_{k}^{2} such that $a \in \mathbf{T}_{s}$ and $b \in \mathbf{T}_{k}$. Vertex (a, b) adjacent to vertex $\left(a^{\prime}, b^{\prime}\right)$ if

- $a^{\prime}=(a+r) \bmod s$ and $b^{\prime} \geq b$,
- or a^{\prime} between $(a+r+1) \bmod s$ and $(a+s-r-1) \bmod s$,
- or $a^{\prime}=(a-r) \bmod s$ and $b^{\prime} \leq b$.

Proposition

For graph G and integers $s \geq 2 r$, the number of circular (sk, rk)-colourings of G is polynomial in k.

Conjecture

All strongly polynomial sequences of graphs $\left(H_{k}\right)$ such that $H_{k} \subseteq_{\text {ind }} H_{k+1}$ can be obtained by QF interpretation of a "basic sequence" (disjoint union of transitive tournaments of size polynomial in k with unary relations).

Conjecture

All strongly polynomial sequences of graphs $\left(H_{k}\right)$ such that $H_{k} \subseteq_{\text {ind }} H_{k+1}$ can be obtained by QF interpretation of a "basic sequence" (disjoint union of transitive tournaments of size polynomial in k with unary relations).

Theorem (G., Nešetřil, Ossona de Mendez, 2014+)
A sequence $\left(H_{k}\right)$ of graphs of uniformly bounded degree is a strongly polynomial sequence if and only if it is a QF-interpretation of a basic sequence.

Counting graph homomorphisms Sequences giving graph polynomials

Strongly polynomial sequences of graphs
From proper colourings to fractional and beyond
Relational structures
Example interpretations
All of them?

- When is hom(G, Cayley $\left.\left(A_{k}, B_{k}\right)\right)$ a fixed polynomial (dependent on G) in $\left|A_{k}\right|,\left|B_{k}\right|$, where $B_{k}=-B_{k} \subseteq A_{k}$?
- When is hom(G, Cayley $\left.\left(A_{k}, B_{k}\right)\right)$ a fixed polynomial (dependent on G) in $\left|A_{k}\right|,\left|B_{k}\right|$, where $B_{k}=-B_{k} \subseteq A_{k}$?
- (hypercubes) hom $\left(G, \operatorname{Cayley}\left(\mathbb{Z}_{2}^{k}, S_{1}\right)\right)$ polynomial in 2^{k} and k ($S_{1}=\{$ weight 1 vectors $\}$). [Garijo, G., Nešetřil 2013+]
- When is hom(G, Cayley $\left.\left(A_{k}, B_{k}\right)\right)$ a fixed polynomial (dependent on G) in $\left|A_{k}\right|,\left|B_{k}\right|$, where $B_{k}=-B_{k} \subseteq A_{k}$?
- (hypercubes) hom $\left(G, \operatorname{Cayley}\left(\mathbb{Z}_{2}^{k}, S_{1}\right)\right)$ polynomial in 2^{k} and k ($S_{1}=\{$ weight 1 vectors $\}$). [Garijo, G., Nešetřil 2013+]
- For $D \subset \mathbb{N}$, hom $\left(G, \operatorname{Cayley}\left(\mathbb{Z}_{k}, \pm D\right)\right.$) is polynomial in k for sufficiently large k iff D is finite or cofinite. [de la Harpe \& Jaeger, 1995]
- When is hom $\left(G, \operatorname{Cayley}\left(A_{k}, B_{k}\right)\right)$ a fixed polynomial (dependent on G) in $\left|A_{k}\right|,\left|B_{k}\right|$, where $B_{k}=-B_{k} \subseteq A_{k}$?
- (hypercubes) hom($\left.G, \operatorname{Cayley}\left(\mathbb{Z}_{2}^{k}, S_{1}\right)\right)$ polynomial in 2^{k} and k ($S_{1}=\{$ weight 1 vectors $\}$). [Garijo, G., Nešetřil 2013+]
- For $D \subset \mathbb{N}$, hom $\left(G, \operatorname{Cayley}\left(\mathbb{Z}_{k}, \pm D\right)\right.$) is polynomial in k for sufficiently large k iff D is finite or cofinite. [de la Harpe \& Jaeger, 1995]
- (circular colourings)
$\operatorname{hom}\left(G, \operatorname{Cayley}\left(\mathbb{Z}_{k s},\{k r, k r+1, \ldots, k(s-r)\}\right)\right)$ polynomial in k. [G., Nešetřil, Ossona de Mendez 2014+]
- When is hom $\left(G, \operatorname{Cayley}\left(A_{k}, B_{k}\right)\right)$ a fixed polynomial (dependent on G) in $\left|A_{k}\right|,\left|B_{k}\right|$, where $B_{k}=-B_{k} \subseteq A_{k}$?
- (hypercubes) hom($\left.G, \operatorname{Cayley}\left(\mathbb{Z}_{2}^{k}, S_{1}\right)\right)$ polynomial in 2^{k} and k ($S_{1}=\{$ weight 1 vectors $\}$). [Garijo, G., Nešetřil 2013+]
- For $D \subset \mathbb{N}$, hom $\left(G, \operatorname{Cayley}\left(\mathbb{Z}_{k}, \pm D\right)\right.$) is polynomial in k for sufficiently large k iff D is finite or cofinite. [de la Harpe \& Jaeger, 1995]
- (circular colourings)
$\operatorname{hom}\left(G, \operatorname{Cayley}\left(\mathbb{Z}_{k s},\{k r, k r+1, \ldots, k(s-r)\}\right)\right)$ polynomial in k. [G., Nešetřil, Ossona de Mendez 2014+]
- When is hom(G, Cayley $\left.\left(A_{k}, B_{k}\right)\right)$ a fixed polynomial (dependent on G) in $\left|A_{k}\right|,\left|B_{k}\right|$, where $B_{k}=-B_{k} \subseteq A_{k}$?
- (hypercubes) hom $\left(G, \operatorname{Cayley}\left(\mathbb{Z}_{2}^{k}, S_{1}\right)\right)$ polynomial in 2^{k} and k $\left(S_{1}=\{\right.$ weight 1 vectors $\}$). [Garijo, G., Nešetřil 2013+]
- For $D \subset \mathbb{N}$, hom $\left(G, \operatorname{Cayley}\left(\mathbb{Z}_{k}, \pm D\right)\right)$ is polynomial in k for sufficiently large k iff D is finite or cofinite. [de la Harpe \& Jaeger, 1995]
- (circular colourings)
$\operatorname{hom}\left(G, \operatorname{Cayley}\left(\mathbb{Z}_{k s},\{k r, k r+1, \ldots, k(s-r)\}\right)\right)$ polynomial in k. [G., Nešetřil, Ossona de Mendez 2014+]
- Which graph polynomials defined by strongly polynomial sequences of graphs satisfy a reduction formula (size-decreasing recurrence) like the chromatic polynomial and independence polynomial?
- When is hom(G, Cayley $\left.\left(A_{k}, B_{k}\right)\right)$ a fixed polynomial (dependent on G) in $\left|A_{k}\right|,\left|B_{k}\right|$, where $B_{k}=-B_{k} \subseteq A_{k}$?
- (hypercubes) hom $\left(G, \operatorname{Cayley}\left(\mathbb{Z}_{2}^{k}, S_{1}\right)\right)$ polynomial in 2^{k} and k $\left(S_{1}=\{\right.$ weight 1 vectors $\}$). [Garijo, G., Nešetřil 2013+]
- For $D \subset \mathbb{N}$, hom $\left(G, \operatorname{Cayley}\left(\mathbb{Z}_{k}, \pm D\right)\right)$ is polynomial in k for sufficiently large k iff D is finite or cofinite. [de la Harpe \& Jaeger, 1995]
- (circular colourings)
$\operatorname{hom}\left(G, \operatorname{Cayley}\left(\mathbb{Z}_{k s},\{k r, k r+1, \ldots, k(s-r)\}\right)\right)$ polynomial in k. [G., Nešetřil, Ossona de Mendez 2014+]
- Which graph polynomials defined by strongly polynomial sequences of graphs satisfy a reduction formula (size-decreasing recurrence) like the chromatic polynomial and independence polynomial?
- Which strongly polynomial sequences of graphs give matroid invariants (suitably scaled like the chromatic polynomial)?

Beyond polynomials? Rational generating functions

- For strongly polynomial sequence $\left(H_{k}\right)$,

$$
\sum_{k} \operatorname{hom}\left(G, H_{k}\right) t^{k}=\frac{P_{G}(t)}{(1-t)^{|V(G)|+1}}
$$

with polynomial $P_{G}(t)$ of degree at most $|V(G)|$.

Beyond polynomials? Rational generating functions

- For strongly polynomial sequence $\left(H_{k}\right)$,

$$
\sum_{k} \operatorname{hom}\left(G, H_{k}\right) t^{k}=\frac{P_{G}(t)}{(1-t)^{|V(G)|+1}}
$$

with polynomial $P_{G}(t)$ of degree at most $|V(G)|$.

- For eventually polynomial sequence $\left(H_{k}\right)$ such as $\left(C_{k}\right)$,

$$
\sum_{k} \operatorname{hom}\left(G, H_{k}\right) t^{k}=\frac{P_{G}(t)}{(1-t)^{|V(G)|+1}}
$$

with polynomial $P_{G}(t)$.

Beyond polynomials? Rational generating functions

- For quasipolynomial sequence of Turán graphs $\left(T_{k, r}\right)$

$$
\sum_{k} \operatorname{hom}\left(G, T_{k, r}\right) t^{k}=\frac{P_{G}(t)}{Q(t)^{|V(G)|+1}}
$$

with polynomial $P_{G}(t)$ of degree at most $|V(G)|$ and polynomial $Q(t)$ with zeros r th roots of unity.

Beyond polynomials? Rational generating functions

- For quasipolynomial sequence of Turán graphs ($T_{k, r}$)

$$
\sum_{k} \operatorname{hom}\left(G, T_{k, r}\right) t^{k}=\frac{P_{G}(t)}{Q(t)^{|V(G)|+1}}
$$

with polynomial $P_{G}(t)$ of degree at most $|V(G)|$ and polynomial $Q(t)$ with zeros r th roots of unity.

- For sequence of hypercubes $\left(Q_{k}\right)$,

$$
\sum_{k} \operatorname{hom}\left(G, Q_{k}\right) t^{k}=\frac{P_{G}(t)}{Q(t)^{|V(G)|+1}}
$$

with polynomial $P_{G}(t)$ of degree at most $|V(G)|$ and polynomial $Q(t)$ with zeros powers of 2 .

Beyond polynomials? Algebraic generating functions

- For sequence of odd graphs $O_{k}=J_{2 k-1, k-1,\{0\}}$

$$
\sum_{k} \operatorname{hom}\left(G, O_{k}\right) t^{k}
$$

is algebraic (e.g. $\frac{1}{2}(1-4 t)^{-\frac{1}{2}}$ when $G=K_{1}$).

Three papers

- P. de la Harpe and F. Jaeger, Chromatic invariants for finite graphs: theme and polynomial variations, Lin. Algebra Appl. 226-228 (1995), 687-722

Defining graphs invariants from counting graph homomorphisms. Examples. Basic constructions.

- D. Garijo, A. Goodall, J. Nešetřil, Polynomial graph invariants from homomorphism numbers. 40pp. arXiv: 1308.3999 [math.CO] Further examples. New construction using tree representations of graphs.
- A. Goodall, J. Nešetřil, P. Ossona de Mendez, Strongly polynomial sequences as interpretation of trivial structures. 21pp. arXiv:1405.2449 [math.CO].
General relational structures: counting satisfying assignments for quantifier-free formulas. Building new polynomial invariants by interoretation of "trivial" sequences of marked tournaments.

Prime power $q=p^{d} \equiv 1(\bmod 4)$
Paley graph $P_{q}=\operatorname{Cayley}\left(\mathbb{F}_{q}\right.$, non-zero squares $)$,

Prime power $q=p^{d} \equiv 1(\bmod 4)$
Paley graph $P_{q}=$ Cayley $\left(\mathbb{F}_{q}\right.$, non-zero squares),
Quasi-random graphs: $\operatorname{hom}\left(G, P_{q}\right) / \operatorname{hom}\left(G, G_{q, \frac{1}{2}}\right) \rightarrow 1$ as $q \rightarrow \infty$.

Prime power $q=p^{d} \equiv 1(\bmod 4)$
Paley graph $P_{q}=$ Cayley $\left(\mathbb{F}_{q}\right.$, non-zero squares),
Quasi-random graphs: $\operatorname{hom}\left(G, P_{q}\right) / \operatorname{hom}\left(G, G_{q, \frac{1}{2}}\right) \rightarrow 1$ as $q \rightarrow \infty$.

Proposition (Corollary to result of de la Harpe \& Jaeger, 1995)

$\operatorname{hom}\left(G, P_{q}\right)$ is polynomial in q for series-parallel G.
e.g. $\operatorname{hom}\left(K_{3}, P_{q}\right)=\frac{q(q-1)(q-5)}{8}$

Prime power $q=p^{d} \equiv 1(\bmod 4)$
Paley graph $P_{q}=$ Cayley $\left(\mathbb{F}_{q}\right.$, non-zero squares),
Quasi-random graphs: $\operatorname{hom}\left(G, P_{q}\right) / \operatorname{hom}\left(G, G_{q, \frac{1}{2}}\right) \rightarrow 1$ as $q \rightarrow \infty$.

Proposition (Corollary to result of de la Harpe \& Jaeger, 1995)

$\operatorname{hom}\left(G, P_{q}\right)$ is polynomial in q for series-parallel G.
e.g. $\operatorname{hom}\left(K_{3}, P_{q}\right)=\frac{q(q-1)(q-5)}{8}$

Prime $q \equiv 1(\bmod 4), q=4 x^{2}+y^{2}$, [Evans, Pulham, Sheehan, 1981]:

$$
\operatorname{hom}\left(K_{4}, P_{q}\right)=\frac{q(q-1)}{1536}\left((q-9)^{2}-4 x^{2}\right)
$$

Prime power $q=p^{d} \equiv 1(\bmod 4)$
Paley graph $P_{q}=$ Cayley $\left(\mathbb{F}_{q}\right.$, non-zero squares),
Quasi-random graphs: $\operatorname{hom}\left(G, P_{q}\right) / \operatorname{hom}\left(G, G_{q, \frac{1}{2}}\right) \rightarrow 1$ as $q \rightarrow \infty$.

Proposition (Corollary to result of de la Harpe \& Jaeger, 1995)

$\operatorname{hom}\left(G, P_{q}\right)$ is polynomial in q for series-parallel G.
e.g. $\operatorname{hom}\left(K_{3}, P_{q}\right)=\frac{q(q-1)(q-5)}{8}$

Prime $q \equiv 1(\bmod 4), q=4 x^{2}+y^{2}$, [Evans, Pulham, Sheehan, 1981]:

$$
\operatorname{hom}\left(K_{4}, P_{q}\right)=\frac{q(q-1)}{1536}\left((q-9)^{2}-4 x^{2}\right)
$$

Is hom $\left(G, P_{q}\right)$ polynomial in q and x for all graphs G ?

Prime power $q=p^{d} \equiv 1(\bmod 4)$
Paley graph $P_{q}=$ Cayley $\left(\mathbb{F}_{q}\right.$, non-zero squares),
Quasi-random graphs: $\operatorname{hom}\left(G, P_{q}\right) / \operatorname{hom}\left(G, G_{q, \frac{1}{2}}\right) \rightarrow 1$ as $q \rightarrow \infty$.

Proposition (Corollary to result of de la Harpe \& Jaeger, 1995)

$\operatorname{hom}\left(G, P_{q}\right)$ is polynomial in q for series-parallel G.
e.g. $\operatorname{hom}\left(K_{3}, P_{q}\right)=\frac{q(q-1)(q-5)}{8}$

Prime $q \equiv 1(\bmod 4), q=4 x^{2}+y^{2}$, [Evans, Pulham, Sheehan, 1981]:

$$
\operatorname{hom}\left(K_{4}, P_{q}\right)=\frac{q(q-1)}{1536}\left((q-9)^{2}-4 x^{2}\right)
$$

Is hom $\left(G, P_{q}\right)$ polynomial in q and x for all graphs G ?
Theorem (G., Nešeť̌il, Ossona de Mendez , 2014+)
If $\left(H_{k}\right)$ is strongly polynomial then there are only finitely many terms belonging to a quasi-random sequence of graphs.

