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Polynomials of graphs on surfaces.
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Krushkal polynomial.

Definition. Let G be a graph embedded into a surface Σ.

KG,Σ(X ,Y ,A,B) :=
∑

F⊆G

X k(F )−k(G)Y k(Σ\F )−k(Σ)Ag(F )Bg⊥(F ),

where the sum runs over all spanning subgraphs considered as
ribbon graphs;
k(F ) stands for the number of connected components of the
surface F ;
the parameters g(F ) and g⊥(F ) stand for the genera of
surfaces F and Σ \ F .
For non-orientable surfaces they are equal to one half of the
number of Möbius bands glued into spheres to represent the
surfaces.
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Topological meaning of exponents.

k(Σ \ F )− k(Σ) = dim(ker(H1(F ;Z2) → H1(Σ;Z2))),

s(F ) = dim H1(F̃ ;Z2),

s⊥(F ) = dim H1(Σ̃ \ F ;Z2),

where F̃ and Σ̃ \ F are the surfaces obtained by gluing a disc to
each boundary component of surfaces F and Σ \ F .
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Properties.

KG,Σ =





KG/e,Σ + KG−e,Σ if e is ordinary, that is neither
a bridge nor a loop,

(1 + X ) · KG/e,Σ if e is a bridge.
(1 + Y ) · BRG−e,Σ if e is a separable loop, the one

whose removal together with its
vertex separates the surface Σ.

KG1⊔G2,Σ1⊔S2
= KG1,Σ1

· KG2,Σ2
,where ⊔ is a disjoint union.
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Example.

G =
a

a
b

b
c

c
=

a

b c

κ = k(Σ\F )−k(Σ)

F ∅ {a} {b} {a, b} {c} {a, c} {b, c} {a, b, c}

k(F ) 2 1 1 1 1 1 1 1
κ(F ) 0 0 0 0 0 0 0 0
g(F ) 0 0 0 0 0 0 0 1

g⊥(F ) 1 1 1 0 1 0 0 0
KG,Σ XB B B 1 B 1 1 A

KG,Σ = 3 + 3B + XB + A.
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Quasi-trees.

Definition. A quasi-tree is a ribbon graph with one boundary
component.

G =

a

b c

Q{a} Q{b} Q{c} Q{a,b,c}

a

b c

a

b c

Sergei Chmutov Krushkal polynomial of graphs on surfaces



Quasi-tree activities. Chord diagrams.

A round trip along the boundary component of Q passes the
boundary arcs of each edge-ribbon twice. A chord diagram
CG(Q) consists of a circle corresponding to the boundary of Q
and chords connecting the pairs of arcs corresponding to the
same edge-ribbon.

G =

a

b c

Q{a} =

a
a

b
bc

c
CG(Q{a}) =

a

a

b

bc

c
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Quasi-tree activities.

Let ≺ be a total order of edges E(G).
Definition [A.Champanerkar, I.Kofman, N.Stoltzfus].
An edge is called live if the corresponding chord is smaller than
any chord intersecting it relative to the order ≺. Otherwise it is
called dead.

For plane graphs G a spanning quasi-tree is a tree and the
notion of live/dead coincides with the classical Tutte’s notion of
active/inactive.

In the example above the edge a is live and the edges b and c
are dead relative to the order a ≺ b ≺ c for all four quasi-trees.
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Quasi-tree expansion of the Krushkal polynomial.

Theorem [C.Butler].
For a ribbon graph G, the Krushkal polynomial has the following
expansion over the set of quasi-trees.

KG(X ,Y ,A,B) =
∑

Q∈QG

Ag(F (Q))TQ · Bg(F (Q∗))TQ∗ ,

where TQ = TΓ(Q)(X + 1,A+ 1) and TQ∗ = TΓ(Q∗)(Y + 1,B + 1)
stand for the classical Tutte polynomial of abstract graphs Γ(Q)
and Γ(Q∗).
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F (Q) and Γ(Q). Orientable case.

Definition.

• F (Q) is a spanning ribbon subgraph of Q obtained by
deleting the internally live (orientable) edges of Q;

• Γ(Q) is a usual abstract (not embedded) graph whose
vertices are the connected components of F (Q) and edges
are the internally live (orientable) edges of Q.

Q Q{a} Q{b} Q{c} Q{a,b,c}

F (Q)

b c b c

Γ(Q)
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Dual graphs.

Let G⋆ be the usual Poincaré dual graph ribbon graph to G,
regarded as a graph cellularly embedded into the surface
Σ = G̃.
A spanning subgraph F ⊆ G determines a spanning subgraph
F ∗ ⊆ G⋆ containing all edges of G⋆ which do not intersect
edges of F .

G =
a

a
b

b
c

c
=

a

b c

G⋆ =

a

b
c

Q{a} =
a

Q∗
{a} =

b c
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Dual quasi-trees.

• The spanning subgraphs F and F ∗ have common
boundary and their gluing along this common boundary
gives the whole surface Σ.

• If Q is a spanning quasi-tree for G, then subgraph Q∗ is a
quasi-tree for G⋆.

• These quasi-trees have the same chord diagrams,
CG(Q) = CG⋆(Q∗).

• The natural bijection of edges of G and G⋆ leads to the
total order ≺⋆ on edges of G⋆ induced by ≺.

• The property of an edge of being live/dead relative to Q is
preserved by the bijection to the same property relative to
Q∗.

• The property of being internal/external is changed to the
opposite.
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F (Q∗) and Γ(Q∗).

Definition.

• F (Q∗) is a spanning ribbon subgraph of Q∗ obtained by
deleting the internally live (orientable) edges of Q∗;

• Γ(Q∗) is an abstract graph whose vertices are the
connected components of F (Q∗) and edges are the
internally live (orientable) edges of Q∗.

Q∗ Q∗
{a} Q∗

{b} Q∗
{c} Q∗

{a,b,c}

F (Q∗)

b c c b

Γ(Q∗)
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Quasi-tree expansion.

Q Q{a} Q{b} Q{c} Q{a,b,c}

F (Q)

b c b c

Γ(Q)

Ag(F (Q)) 1 1 1 1
TQ X + 1 1 1 A + 1

KG(X ,Y ,A,B) =
∑

Q∈QG

Ag(F (Q))TQ · Bg(F (Q∗))TQ∗ ,

where TQ = TΓ(Q)(X + 1,A+ 1) and TQ∗ = TΓ(Q∗)(Y + 1,B + 1)
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Quasi-tree expansion. Dual part.

Q∗ Q∗
{a} Q∗

{b} Q∗
{c} Q∗

{a,b,c}

F (Q∗)

b c c b

Γ(Q∗)

Bg(F (Q∗)) B 1 1 1
TQ∗ 1 B + 1 B + 1 1

KG = (X +1)B +(B +1)+ (B +1)+ (A+1) = XB +A+3B +3,
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